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Abstract 16 

In temperate and boreal forests, competition for soil resources between free-living saprotrophs and 17 

ectomycorrhizal (EcM) fungi has been suggested to restrict saprotrophic fungal dominance to the most 18 

superficial organic soil horizons in forests dominated by EcM trees. By contrast, lower niche overlap 19 

with arbuscular mycorrhizal (AM) fungi could allow fungal saprotrophs to maintain this dominance 20 

into deeper soil horizons in AM-dominated forests. 21 

Here we used a natural gradient of adjacent forest patches that were dominated by either AM or EcM 22 

trees, or a mixture of both to determine how fungal communities characterized with high-throughput 23 

amplicon sequencing change across organic and mineral soil horizons. 24 

We found a general shift from saprotrophic to mycorrhizal fungal dominance with increasing soil depth 25 

in all forest mycorrhizal types, especially in organic horizons. Vertical changes in soil chemistry, 26 

including pH, organic matter, exchangeable cations, and extractable phosphorus, coincided with shifts 27 

in fungal community composition. 28 

Although fungal communities and soil chemistry differed among adjacent forest mycorrhizal types, 29 

variations were stronger within a given soil profile, pointing to the importance of considering horizons 30 

when characterizing soil fungal communities. Our results also suggest that in temperate forests, vertical 31 

shifts from saprotrophic to mycorrhizal fungi within organic and mineral horizons occur similarly in 32 

both ectomycorrhizal and arbuscular mycorrhizal forests. 33 

 34 

Keywords: Fungal guilds; Soil physico-chemistry; Podzolic soil; Vertical segregation; Acer 35 

saccharum; Fagus grandifolia.  36 
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1. Introduction 37 

Soil fungi drive the biogeochemical cycling of carbon (C) and nutrients in terrestrial ecosystems. Free-38 

living saprotrophic fungi are major decomposers of soil organic matter, but mycorrhizal fungi also play 39 

an important role [1–3]. In northern temperate forests, there are two major types of root-associated 40 

fungi: arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) fungi [4, 5]. Mycorrhizal fungi acquire 41 

C via plant hosts and many EcM fungi possess the enzymatic capacity to directly degrade organic 42 

matter, potentially competing with free-living saprotrophs for organic nutrients such as nitrogen (N), 43 

which promote soil C accumulation [6–8]. By contrast, AM fungi have limited degrading abilities and 44 

therefore might compete less strongly with saprotrophic fungi for nutrients [9–11]. Such interactions 45 

among saprotrophic and mycorrhizal fungi could have far-reaching implications for the C cycle, 46 

especially in northern forests where a large fraction of global soil C is stored [3, 12, 13]. In particular, 47 

it has been suggested that these interactions might help to explain differences in the amount and 48 

vertical distributions of soil C between ectomycorrhizal- and arbuscular mycorrhizal-dominated forests 49 

[7, 14, 15]. 50 

 51 

A first step towards understanding of interactions among saprotrophic and mycorrhizal fungi and their 52 

functional consequences is to identify their co-occurrence patterns in soils [e.g. 16]. Different groups of 53 

fungi can compete with each other for soil resources because of overlapping niches [7, 16–18]. In 54 

particular, fungal types and taxa differ in their vertical distribution, especially in well-stratified soil 55 

[19–21]. In EcM-dominated ecosystems such as boreal forests, strong vertical segregation of fungal 56 

guilds occurs in the soil profile, where the litter layer is dominated by saprotrophic fungi and in older 57 

and deeper layers are increasingly dominated by EcM fungi [21–23]. However, it remains unclear 58 

whether this spatial separation reflects niche differentiation or competitive exclusion of saprotrophic 59 

fungi by EcM fungi [7, 17]. Competitive interactions for nutrients among these fungal groups could 60 

promote organic matter accumulation [24–26]. In AM-dominated forests, interactions and distribution 61 

patterns may be different because AM fungi might not compete as strongly with saprotrophic fungi 62 

than EcM fungi. However, studies of fungal vertical distribution in AM-dominated ecosystems have 63 

largely focused on grasslands and crop systems [27–29] but not forests. To better understand the 64 

impacts of global and land use changes on forest functioning, there is a crucial need to take different 65 
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mycorrhizal types fungi into consideration simultaneously [6, 7, 30], especially the AM strategy given 66 

its importance in temperate forests [10]. 67 

 68 

A general hypothesis on vertical segregation among mycorrhizal types suggests that, when they co-69 

occur, EcM fungi and ericoid mycorrhizal (ErM) will dominate organic horizons while AM fungi will 70 

predominantly occupy mineral horizons or soils [31, 32]. This view is supported by studies based on: i) 71 

root colonization patterns in environments where mycorrhizal types co-occur [e.g. 33], ii) root patterns 72 

and isotopic measurements of plants of different mycorrhizal types [e.g. 32, 34], iii) root colonization 73 

patterns in "dual mycorrhizal" plants [35–37], iv) the different nutritional benefits of fungal symbionts 74 

and their enzymatic capacity [31, 32] and v) global patterns of mycorrhizal distribution [31, 38]. 75 

However, to our knowledge this hypothesis about vertical distribution of distinct mycorrhizal types 76 

(e.g. EcM and AM) across horizons has not been supported by detailed fungal community analyses. 77 

For example, mycorrhizal fungal distribution does not always follow root distribution (e.g. presence of 78 

AM fungi in the litter horizon [39]), and to focus on roots or rhizosphere sampling overlooks at long 79 

extraradical hyphae of mycorrhizal fungi that penetrate far from root surfaces. Few studies have 80 

studied vertical distribution at spatial scales that are fine (i.e. cm) and functional (i.e. by horizons). To 81 

our knowledge, the vertical distribution of soil fungi in neighboring forest stands dominated by 82 

different mycorrhizal types has not been reported. Therefore, it is not clear whether EcM or AM fungi 83 

show similar vertical niches [32]. 84 

 85 

The difficulties associated with identifying the microorganisms directly involved in soil 86 

biogeochemical cycling such as fungal saprotrophs and mycorrhizal fungi though their extraradical 87 

hyphae has been a major obstacle to understand their impacts and the importance of their interactions. 88 

Specific biomarkers can be used as proxy to quantify fungal biomass in soils such as phospholipid fatty 89 

acid [e.g. 40], but they are common in many fungal groups and cannot discriminate between free-living 90 

saprotrophic fungi and EcM fungal lineages because EcM symbiosis has arisen independently and 91 

persisted numerous times in the Basidiomycetes, Ascomycetes, and Zygomycetes [41]. Also, the 92 

mycelia of some fungi does not contain ergosterol [42]. With advances in high-throughput amplicon 93 

sequencing [43], we are able to identify community members and their corresponding guilds [44–46]. 94 

Determining the taxonomic composition of fungal communities is important because different species 95 
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within the same fungal guild can vary in their effects on C and nutrients cycling [e.g. 47, 48]. Using 96 

such sequencing methods, fungal community composition has been found to vary markedly across 97 

large spatial scales, driven by broad-scale changes in climate and soil properties [49, 50]. However, the 98 

mechanisms shaping distribution of fungal community and fungal groups such as free-living and root-99 

associated at small spatial scales remain comparatively little studied, and high-throughput amplicon 100 

sequencing will allow to understand their potential impact on ecosystem functioning [19, 51, 52]. 101 

 102 

To determine the vertical distribution of fungal communities and guilds among temperate forests, we 103 

characterized soil fungi and chemistry in adjacent forest patches dominated by trees that form AM or 104 

EcM or a mixture of both strategies. Specifically, we used the natural co-occurring distribution of Acer 105 

saccharum and Fagus grandifolia that associates exclusively with AM and EcM fungal symbionts 106 

respectively [53]. These two co-occurring tree species share similar ecological strategies that they are 107 

both deciduous, shade-tolerant and can dominate the canopy in adjacent forest patches in northeastern 108 

North America [54, 55]. Their natural co-occurrence patterns provide an opportunity to compare 109 

vertical distribution of fungal community composition in different forest mycorrhizal types, under 110 

similar environmental conditions, thus minimizing variation in other important factors such as climate, 111 

parent material or topography. Using this natural experimental design, we assessed how the fungal 112 

community, guilds and root colonization vary across soil horizons along an AM-EcM gradient, and 113 

determined to which extent this variability was linked with changes in soil chemical properties. We 114 

expected the shift from saprotrophic to mycorrhizal fungi to occur deeper in AM forests compared to 115 

EcM forests, and at an intermediate depth in forests containing a mixture of both strategies. 116 

 117 

2. Materiel and Methods 118 

2.1 Study area 119 

The study was conducted at the University of Montréal’s field station (Station de biologie des 120 

Laurentides, Saint-Hippolyte, Québec, Canada). The field station is representative of temperate forests 121 

of the Lower Laurentians and the Canadian Shield. The soil has a sandy loam texture derived from 122 

well-drained rocky glacial till on a bedrock of Precambrian anorthosite [56, 57]. The soils are ferro-123 

humic and gleyed humo-ferric podzols with moder humus forming the forest floor [57–59]. The mean 124 

annual temperature is 4.3°C and total annual precipitation is 1195 mm, with ~25% falling as snow 125 
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(based on 1981–2010 data, meteorological station #7037310, Saint-Hippolyte). The study area is 126 

located within the sugar maple-yellow birch domain [60]. Most of the forest regrew following a major 127 

fire that occurred around 1923 [61]. Mesic sites are composed mostly of a mosaic of Acer saccharum 128 

and Fagus grandifolia, with Betula alleghaniensis, Populus grandidendata and Acer rubrum also 129 

common [57]. The understory comprised various small tree species (e.g. Acer pensylvanicum) and 130 

shrubs (e.g Vaccinium spp., Viburnum spp.). 131 

 132 

2.2 Selection of forest plots 133 

Plots were selected based on the dominance of different mycorrhizal tree types: AM-dominated stands 134 

(>80% relative basal area by AM trees; mainly Acer saccharum) and EcM-dominated stands (generally 135 

>80% relative basal area by EcM trees except one plot at 63%; mainly Fagus grandifolia), and mixed 136 

stands (approximately equal basal area of AM and EcM trees, mainly A. saccharum maple and F. 137 

grandifolia). Tree basal area was based on all trees ≥5 cm diameter at breast height (DBH) within a 138 

plot. Plots were 20 m × 20 m in size. We selected five blocks, each containing one plot of each 139 

corresponding to one of the three mycorrhizal types (i.e. EcM, AM, mixed), for a total of 15 plots (Fig. 140 

S1). Plots were selected as to minimize variation in environmental conditions (i.e. altitude, slope, 141 

aspect, total basal area; Table S1) among plots within a block, and to be as close as possible from each 142 

other (<400 m). For each plot, precise geographic coordinates, altitude, topographic location, slope and 143 

orientation were measured (Table S1). 144 

 145 

2.3 Soil sampling 146 

Soil sampling was conducted in July and August 2015. In each plot, 10 samples were taken along two 147 

oriented north-south transects (five samples per transect). Samples were collected to 20 cm depth using 148 

PVC cores (7.5 cm in diameter). Samples were kept in coolers with ice and transported to the 149 

laboratory to be processed within 96 hours of sampling. The PVC cores were split open to measure 150 

horizon thickness then separated by: litter (L), where original structures are easily distinguishable, 151 

fragmented (F), where there had been partial decomposition where structures were difficult to 152 

recognize, and humus (H), comprised of highly decomposed organic matter, where original structures 153 

are indistinguishable (see Fig. S2). The mineral horizons were Ae, as characterized by 154 

leaching/eluviation of clay, Fe, Al or organic matter; and B, as characterized by illuviation/enrichment 155 
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in organic matter [62]. The 10 samples per plot were pooled by horizon. One sub-sample per horizon 156 

per plot was immediately frozen for subsequent DNA extraction. Fine roots (<2 mm in diameter) were 157 

set aside for mycorrhizal colonization analyses and a sub-sample of soil was air-dried for chemical 158 

analyses. 159 

 160 

2.4 Soil analysis  161 

Air-dried soils were analyzed for pH, total carbon (C), total nitrogen (N), total phosphorus (P), organic 162 

P, inorganic P and labile P. The pH was determined in 10 mM CaCl2 in a 1:2 soil to solution ratio with 163 

a glass electrode. Total C and N were determined simultaneously by automated combustion and gas 164 

chromatography with thermal conductivity detection on a Flash EA112 analyzer (CE Elantech, New 165 

Jersey, USA). After NaOH-EDTA extraction, inorganic P in the extraction material was determined by 166 

molybdate colorimetry at 880 nm with a 1-cm path length. Total P in the NaOH-EDTA extracts was 167 

determined by molybdate colorimetry at 880 nm with a 1-cm path length, following acid-persulfate 168 

digestion at 80 °C overnight in sealed glass tubes. Organic P was calculated as the difference between 169 

NaOH-EDTA total P and NaOH-EDTA Pi. Labile (plant-available) P was determined by Bray-1 170 

extraction, with phosphate detected using automated molybdate colorimetry on a Lachat Quikchem 171 

8500 (Hach Ltd, Loveland, CO). Exchangeable cations were determined by extraction in 0.1 M BaCl2 172 

(2 hours, 1:30 soil to solution ratio) and detection by inductively-coupled plasma optical-emission 173 

spectrometry (ICP–OES) with an Optima 7300 DV (Perkin-Elmer Ltd, Shelton, CT, USA). Total 174 

exchangeable bases (TEB) was calculated as the sum of the charge equivalents of Ca, K, Mg and Na. 175 

Effective cation exchange capacity (ECEC) was calculated as the sum of the charge equivalents of Al, 176 

Ca, Fe, K, Mg, Mn and Na. Base saturation was determined as TEB / ECEC ×100. 177 

 178 

2.4 Root colonization by fungi 179 

Fungal colonization was determined on fine roots (<2 mm diameter) of F, H, Ae and B horizons (no 180 

roots in the L). Roots were cleared in 10% w/v KOH, then stained in an ink and vinegar solution for 5 181 

min at 90 °C [63–65]. Roots were then rinsed in slightly acidified tap water for 30–40 min to remove 182 

excess ink, after which they were placed in a 50% (v/v) lacto-glycerol solution for storage until 183 

colonization could be evaluated. The gridline intersection method was performed under 184 

stereomicroscope to quantify the length of roots colonized by AM and EcM fungi [63, 66]. Due to 185 
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magnification limits, some structures of ericoid mycorrhizal fungi might have been included in the AM 186 

colonization percentage. 187 

 188 

2.5 Fungal community characterization 189 

The fungal community was characterized by amplicon sequencing. Soil DNA was extracted using the 190 

PowerSoil DNA Isolation Kit (#12888-100 - Mo-Bio Laboratories Inc., Carlsbad, USA) following the 191 

instructions of the manufacturer. Around 100 mg of soil for organic horizons (L, F and H), and 200 mg 192 

for mineral horizons (Ae and B) were used for the extraction.  193 

Soil amplification of the Internal Transcribed Spacer of the ribosomal RNA was performed by Genome 194 

Québec (Montréal, Canada) with the ITS3_KYO2 and ITS4 primer pair [67]. This pair of primer limits 195 

coverage bias toward Ascomycetes or Basidiomycetes and is also known to amplify Glomeromycetes 196 

[e.g. 68]. The final reaction mix contained 0.02 U µl−1 Taq Roche HiFi polymerase, 1X Buffer 10X 197 

with 18 mM MgCl2, 5% DMSO, 0.2mM of each dNTP and 0.5 µM of each primer and DNA sample 198 

diluted at 1/100. Thermal cycling was done in an Eppendorf Mastercycler Gradient (Eppendorf, 199 

Hamburg, Germany) with the following cycling conditions: 2 min initial denaturation at 94 °C; 40 200 

cycles of 30 s denaturation at 94 °C, 30 s annealing at 55 °C and 30 s elongation at 72 °C; and a 7 min 201 

final elongation at 72 °C. The PCR products were loaded on 1% agarose gels with 1× sodium borate 202 

buffer run at 220 V, and visualized after ethidium bromide staining (1 µg ml−1). 203 

Soil amplicon sequencing was performed by using the MiSeq Illumina technology by Genome Québec 204 

(Montréal, Canada). The final concentration of the reaction mix contained 0.025 U µl−1 Taq Roche 205 

HiFi polymerase, 1X Buffer 10X, 1.8mM of MgCl2, 5% DMSO. Sequencing was done in an MiSeq 206 

Illumina with the following conditions: 10 min initial denaturation at 95 °C; 15 cycles of 15 s 207 

denaturation at 95 °C, 30 s annealing at 60 °C and 1 min elongation at 72 °C; and a 3 min final 208 

elongation. 209 

 210 

2.6 Bioinformatics 211 

The fungal community was determined by filtering, denoising and assigning taxonomy to paired 212 

amplicons using a customized script 213 

(https://github.com/alexiscarter/Fungal_com_SBL/tree/master/dada2) adapted from the DADA2 214 

pipeline [69]. In brief, using the filterAndTrim function, reads were truncated at 280 bp and discarded if 215 
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they had more than three expected errors or a quality score lower than six. Then, amplicon sequence 216 

variants (ASV) were inferred for each sample with the dada function. Forward and reverse reads were 217 

merged using the mergePairs function with a minimum overlap of 12 bp. Potentially chimeric 218 

sequences were identified by the pooled method of the removeBimeras function. The amplicon 219 

sequence variant approach was used instead of the classical operational taxonomic as proposed by 220 

Callahan et al. [70] and others [71]. This method does not use a particular threshold for classifying 221 

sequences into operational taxonomic units, as no threshold appears to be universally applicable for 222 

fungi [72]. Instead, it used the divisive amplicon denoising algorithm aimed at finding ASV that refer 223 

back to original biological sequences [69, 73]. The taxonomy of the ASV was assigned with the 224 

UNITE database, version 7.2 [74]. ASV that belong to the same species were grouped together. The 225 

functional information for ASV was obtained from the online FUNGuild database [44]. 226 

 227 

2.7 Statistical analyses 228 

To describe the fungal community and assess the effects of environmental parameters we used 229 

ordination approaches and multivariate analyses of variance. The community matrix was composed of 230 

the number of sequences per ASV of 75 soil samples from five soil horizons in each of 15 plots (one 231 

sample of L horizon in an EcM plot was excluded due to poor amplification). Due to some inherent 232 

limitations of the approach, either biological (e.g., varying number of DNA copies per organism) or 233 

technical (varying sequencing depth, extraction and amplification biases among samples), the number 234 

of sequence reads is not a direct measure of taxa abundance in the environment, but comparisons 235 

among samples remain useful as they can be considered semi-quantitative [75, 76]. Explanatory 236 

variables for each sample were classified into three groups: (i) soil chemistry, (ii) soil horizon (L, F, H, 237 

Ae or B), and (iii) forest type (AM, EcM or mixed). 238 

Differences in soil properties, root colonization, guild abundance and richness among horizons and 239 

forest type were tested using linear mixed-effect models; block was treated as random factor in these 240 

analyses. Model assumptions were assessed by visual inspections of residuals. Comparison were 241 

determined using post-hoc Tukey tests were used to determine significant differences. 242 

In ß-diversity analyses, we used the Bray-Curtis dissimilarity index for the community structure and its 243 

binary version, the Sørensen index for the community composition [77]. These asymmetrical 244 
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coefficients do not consider double zeroes and can therefore be used with raw abundances or counts 245 

[77]. 246 

To visualize differences in fungal community composition and abundance among samples, we used 247 

non-metric multidimensional scaling (NMDS). To test for differences between samples across horizons 248 

and forest types, we used permutational multivariate analysis of variance (PERMANOVA). P-values 249 

for pairwise tests were adjusted using the Benjamini-Hochberg method [78]. Because the 250 

PERMANOVA method is sensitive to differences in multivariate dispersions among groups, the 251 

homogeneity of dispersion was tested to assess differences and tested for significance by permutations 252 

[79]. 253 

Distance-based redundancy analysis (RDA) was used to quantify the extent to which changes in fungal 254 

community structure were related to soil chemistry, horizon and forest type [77]. Soil chemistry data 255 

were standardized and linear dependencies were explored using variance inflation factors and avoided 256 

if >10 [80]. To test how much variance was independently explained by the explanatory matrices, 257 

variation partitioning was performed using partial RDA [pRDA, 81]. In RDA and pRDA, coefficients 258 

of determination were adjusted (i.e. adjusted-R2 values) to take into account the number of explanatory 259 

variables in the model [82, 83].  260 

Analyses were performed and visualized using the R software [84] with the following main packages: 261 

dada2 [69], dplyr [85], emmeans [86], ggplot2 [87], ggpubr [88], nlme [89], phyloseq [90] and vegan 262 

[91]. Code for bioinformatical and statistical analyses are available at: 263 

https://doi.org/10.5281/zenodo.3631982. Sequence and chemistry data can be accessed at 264 

https://doi.org/10.5281/zenodo.3631861. 265 

 266 

3. Results 267 

3.1 Soil chemistry variation across horizons and forest types 268 

All soil chemical properties varied significantly across horizons (Fig. 1), and these differences were 269 

consistent across forest types (soil horizon ´ forest type interaction, P > 0.05; except for pH where P = 270 

0.026). The pH of the L horizon declined from pH ~4 (in 0.01 M CaCl2) to ~3.25 in the H horizon, but 271 

this decline was not as pronounced for AM forests than for EcM or mixed forests (Fig. 1a). The pH 272 

then increased from the H to the B horizon in all forests. Effective cation exchange capacity and base 273 

saturation declined with increasing depth (Figs. 1b-c), except for ECEC in the Ae horizon. Organic C 274 
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generally declined with depth, but AM forests tended to have lower organic C concentration in the H 275 

horizons than EcM or mixed forests (Fig. 1d). By contrast, total N increased from the L to the Ae 276 

horizon and then declined in the B horizon (Fig. 1e). As a result, the C:N ratio decreased with 277 

increasing depth from the L to the Ae horizon (Fig. 1f). Inorganic and organic P increased in deeper 278 

horizons while labile (Bray) P decreased (Figs. 1g-i). 279 

Forest types differed significantly in their pH, C:N ratio, NaOH-EDTA total P, NaOH-EDTA organic 280 

and inorganic P concentrations (P < 0.05). AM-dominated forest plots tended to have higher pH, total 281 

P, inorganic P and organic P but lower C:N ratio compared to EcM-dominated forest plots. 282 

 283 

3.2 Root colonization by mycorrhizal fungi 284 

Colonization of fine roots by AM and EcM fungi was significantly different among mycorrhizal type 285 

(P < 0.0001, Fig. 2) but only differ across horizons in the EcM-dominated forest (P = 0.007). Fine 286 

roots in AM forest were more strongly colonized by AM fungi than those from mixed and EcM forests 287 

(P < 0.05, Fig. 2a). By contrast, fine roots in EcM forests were more strongly colonized by EcM fungi 288 

compared to those from AM forests (P < 0.05, Fig. 2b). Root colonization by EcM fungi tended to 289 

decrease with soil depth in EcM forest down to ~20% in the B horizon (Fig. 2b). In mixed and AM 290 

forests, EcM colonization was highest in the H or Ae horizons but always lower than 30%. 291 

 292 

3.3 Overall fungal community 293 

We found 781 fungal taxa (at the species level or below) from a total of 2521 ASV detected using 294 

high-throughput amplicon sequencing across all horizons and plots. Fungal ASV richness tended to 295 

decrease with soil depth regardless of the forest type (Fig. S3). The highest fungal ASV richness was 296 

found in L horizons of the AM forests. 297 

 298 

3.4 Fungal guilds 299 

Saprotrophic and symbiotrophic (EcM, AM and ErM) guilds showed distinct vertical distributions 300 

among horizons and across forest types (Fig. 2c-f). Saprotrophic fungal taxa dominated the upper 301 

horizons (especially L and F; Fig. 2c), and mycorrhizal fungi were almost absent in the L horizon 302 

(Figs. 2d-f). Fungal taxa assigned to the saprotrophic guild were slightly more abundant in the organic 303 

horizons of the AM and mixed forests compared to EcM forest (Fig. 2c). Abundance of saprotrophic 304 



12 

fungi were significantly different among forest types (P < 0.031) but differences were not significant 305 

across horizons of different forest types (soil horizon ´ forest type, P = 0.325). In deeper horizons, 306 

sequences attributed to mycorrhizal fungi were more abundant (Figs. 2d-f). Sequences of AM (i.e. 307 

Glomeromycetes) fungi were much more abundant in the AM forest (Fig. 2d), and the opposite was 308 

true for EcM fungi (Fig. 2f). Both AM and EcM taxa were well represented in the mixed forests (Figs. 309 

2d-e). Sequences of ericoid mycorrhizal (ErM) fungi were less abundant in AM forest except for the F 310 

horizon where their abundance was high in all forests (Fig. 2f). Richness patterns of fungal guilds 311 

tended to follow abundance data (Fig. S4). Saprotrophic fungi had the higher number of taxa followed 312 

by EcM, ErM and AM fungi. Saprotrophic fungal richness was highest in the upper horizons and 313 

decreased with depth. There was a higher richness of EcM fungi in EcM and mixed forests and very 314 

few EcM taxa in the L horizon. 315 

 316 

3.5 Fungal community structure 317 

Soil horizons had the strongest influence over fungal community structure (includes abundance data) in 318 

the three forest types, as shown by the NMDS ordination (Fig. 3). The composition (based on presence-319 

absence data) of the fungal community showed similar patterns (Fig. S5), suggesting that results 320 

primarily reflected changes in ASV composition rather than relative abundance. Differences in 321 

multivariate dispersions with Bray-Curtis and Sørensen measures were not significant among forest 322 

types (P > 0.05) but were significant among horizons (P < 0.05), with the L horizon showing the 323 

lowest multivariate dispersions. In other words, fungal communities from the L horizons were more 324 

similar to each other than fungal communities from the other horizons. Fungal community composition 325 

and abundance significantly differed among all horizons but also among forest types (P < 0.001, Table 326 

S2). However, the differences among horizons did not depend on forest type and vice-versa (soil 327 

horizon ´ forest type interaction not significant; Table S2). Pairwise comparisons revealed that fungal 328 

community composition and abundance in AM and EcM forests significantly differed from each other, 329 

but not from mixed forests (Fig. 3).  330 

 331 

3.6 Edaphic drivers of fungal community structure 332 

Variation in soil chemistry explained a large fraction of the total variation in fungal community 333 

structure (adjusted-R2 = 23.3%, P = 0.001, see Table S3 for results of the constrained ordinations). In 334 



13 

the L horizons, fungal communities were associated with higher pH, ECEC, labile L and C:N ratio 335 

(Fig. 4). Fungal communities in mineral horizons (Ae and B) were associated with high organic and 336 

inorganic P but low labile P (Fig. 4). Between L and mineral horizons, fungal communities were 337 

associated with low pH (H horizon) and high labile P (F horizon).  338 

Forest mycorrhizal type explained a lower but still significant amount of variation (adjusted-R2 = 2.7%, 339 

P = 0.006). There was a clear difference in the fungal community structure of AM and EcM forests, 340 

whereas the mixed forests were intermediate or more similar to EcM forest (Fig. 5). 341 

Abiotic and biotic variables together explained ~35% (P = 0.001) of the total variation in the fungal 342 

community structure. Variation in fungal community structure depended on horizons and forest 343 

mycorrhizal types, and was also influenced by soil chemistry (Fig. 6). Within forest types, fungal 344 

communities were not significantly different among blocks. Horizon, forest type and soil chemistry 345 

still explained a significant fraction of the variation in the fungal community structure when 346 

considering the effects of the other variables (Table S3). Most of the explained variation was shared 347 

between soil chemistry and horizon (Fig. 6). However, forest type still had a unique and significant 348 

impact on the variation of the fungal community. A small fraction of variation was shared between soil 349 

chemistry and forest type (Fig. 6). 350 

 351 

4. Discussion 352 

In this study, we determined vertical shifts in soil fungal community composition across soil horizons 353 

and forest mycorrhizal types (AM, EcM, and mixed AM/EcM) and compared how saprotrophic fungal 354 

dominance extends to deeper horizons in AM vs. EcM forests. Although there was a tendency for 355 

lower abundance of saprotrophic fungi in organic F and H horizons in EcM forests than in AM or 356 

mixed forests, all three forest types showed a similar saprotrophic-to-mycorrhizal shift in fungal 357 

composition with increasing soil depth. This shift in fungal dominance was most pronounced in 358 

organic horizons. Moreover, we found that changes in fungal community composition were largely 359 

driven by differences in soil chemistry, which were far stronger across horizons (i.e. depth) within a 360 

single forest than across forest mycorrhizal types for the same horizon. Our results highlight the 361 

importance of considering soil vertical structure and associated changes in chemistry when 362 

characterizing soil fungal communities. They also suggest that, at least in northern forests, AM fungi 363 
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are not being restricted where inorganic nutrients predominate and might have more similar edaphic 364 

vertical niches with EcM fungi than what has been suggested in the literature [31, 32, 35]. 365 

 366 

Fungal communities were strongly stratified with depth along the soil profile, being most distinct in the 367 

L horizon (composed of recently-fallen leaves). Litter of the EcM, AM and mixed forests had high 368 

fungal richness and distinct fungal communities that were dominated by saprotrophic fungi. This has 369 

also been observed in forests of tropical, temperate and boreal biomes dominated by EcM trees [19, 21, 370 

22, 92, 93]. Dominance by saprotrophic fungi in the most superficial litter layer has also been observed 371 

in other AM-dominated ecosystems [29, 94], as we have found in this northern temperate forest. Our 372 

results therefore provide further evidence of this general pattern whereby the L horizon possesses a 373 

distinct fungal community dominated by fungal saprotrophs, compared to deeper horizons in which 374 

mycorrhizal fungi are more abundant. 375 

 376 

As suggested by Bahram et al. [51], studies that have reported weak vertical segregation of fungal 377 

communities have often excluded the most superficial L horizon from their analyses [16, e.g. 49]. The 378 

L horizon of the EcM, AM and mixed forests tended to have higher C:N ratio, pH, concentration of 379 

cations and labile P than deeper horizons. While this pattern seems generalizable for pH [e.g. 21, 93], it 380 

remains uncertain or unexplored for the other chemical variables. Our results suggest that the L horizon 381 

which is characterized by the presence of organic matter in which the original structures can be visually 382 

distinguished [62] should be considered separately in future studies of fungal community composition, 383 

given its chemical, microbial and functional distinctiveness. 384 

 385 

From the F to the B horizon, fungal communities showed strong turnover across soil horizons, with 386 

distinct fungal communities in each horizon. The fungal composition, abundance and guilds tended to 387 

progressively change among horizons in the soil profile but these changes were less pronounced than 388 

with the L. This was also observed in other study systems [21, 93, 95]. There are reports of evenly 389 

distributed guilds among the organic and mineral horizons [e.g. 16], but vertical segregation of fungi 390 

and especially root-associated fungi is often strongly impacted by determinant factors such as soil 391 

chemistry and host plants [19, 20, 51]. In our study, there was major variation in the vertical 392 

distribution of soil fungi that was largely driven by soil chemical characteristics, with these changes 393 
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being observed in all three forest mycorrhizal types. Our results further support those of other studies 394 

that have found the vertical variability of mycorrhizal and saprotrophic fungal communities across 395 

different soil horizons to be much larger than horizontal or temporal variability [51, 96]. Studies that 396 

focus on ecosystem topsoil processes in terrestrial environments should consider the strong physical, 397 

chemical and biological heterogeneity that occurs within the first few centimeters, by sampling distinct 398 

soil horizons separately. 399 

 400 

We showed that underground fungal community structure varied significantly between neighboring 401 

forest dominated by AM or EcM trees. As expected, AM forests showed higher abundance of AM 402 

fungi, whereas EcM forests showed higher abundance of EcM fungi. Direct observation of fungal 403 

colonization in roots confirmed these patterns. Forests with a mix of both strategies supported 404 

intermediate communities between the two extremes of the gradient, as reported in a study focusing on 405 

ecosystem processes [e.g. 97]. It is worth noting that fungal saprotrophs tended to be more abundant in 406 

organic horizons of mixed and AM forests compared to EcM forests. Together with higher pH and 407 

lower organic C in these AM forests, this result might indicate a tendency toward a more “inorganic 408 

nutrient economy” compared to the studied forests dominated by EcM fungi. The latter would 409 

represent a more “organic nutrient economy”, associated with a slower turnover of plant-derived C due 410 

to lower abundance of free-living saprotrophs [10]. These small differences observed at local scale may 411 

be responsible for observed patterns found at the ecosystem scale [14]. It has been found elsewhere that 412 

forests dominated by different species of broadleaf trees of the same mycorrhizal strategy can also 413 

show differences in fungal community structure [98]. However, in our study, fungal composition, 414 

abundance and guilds tended to differ between EcM and AM forests. Such a distinction has previously 415 

been reported in a study comparing very distinctive EcM forests of broadleaf trees vs. conifers [99], the 416 

effect of mycorrhizal type was relatively small but nonetheless present, and could also be linked to 417 

differences in nutrient availability. 418 

 419 

Our study design provides a useful system for exploring the relative importance of mycorrhizal type on 420 

soil biogeochemical cycling. The soil profile in these northern temperate forests have low vertical 421 

mixing, resulting in podzols with high stratification, as commonly encountered in boreal soils. Soil 422 

horizons were easily identifiable mainly through their color and such sampling may allow for better 423 
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association between DNA sequences and soil chemistry as well as more valuable comparison across 424 

sites [100]. Variation in important factors such as parent material, topography and regional climate 425 

were minimized but other factors (e.g. productivity, soil texture) could still co-vary with mycorrhizal 426 

dominance at the plot scale. Importantly, this study system allowed us to study different mycorrhizal 427 

types within the same site [7, 30, 51] and across a gradient of mycorrhizal dominance [15]. The 428 

observed differences in soil chemistry among forests could be linked with dominant mycorrhizal 429 

strategies. Higher saprotrophic fungal diversity has been observed in the upper soil layers of AM-430 

dominated tropical forests compared to EcM forests [101]. Our study provides further evidence, in a 431 

temperate system, host plants are an important factor controlling mycorrhizal community composition 432 

[51, 102]. To some extent, this was expected given that AM and EcM fungi are obligate symbionts 433 

with their host plants [32]. As such, considering tree mycorrhizal strategies and their interactions with 434 

saprotrophs may help to better predict carbon storage at small and global scale [8]. 435 

 436 

Our use of high-throughput amplicon sequencing approach allowed us to assess the distribution of the 437 

soil fungal community and to discriminate among AM, EcM and saprotrophic fungi. However, result 438 

from high-throughput sequencing approaches need to be interpreted with caution because of 439 

unavoidable biases at different levels [43, 103]. For example, how to adequately normalize for taxa 440 

abundance among samples remains unresolved [104, 105]. Furthermore, although we acknowledge that 441 

soil and root compartments might host different fungal communities [e.g. 106], but sampling bulk soil 442 

allows to capture the potential free-living saprotrophs as well as root-associated fungi and their 443 

extraradical hyphae. Finally, our choice of the primers might have resulted in an under-representation 444 

of some fungal groups such as Glomeromycetes, but comparisons in taxa abundance between samples 445 

remain relevant [76].Using specific primers targeting Glomeromycetes [107, 108], and plants using 446 

DNA from the root tissue [68, 109] would certainly allow to further understand the importance of these 447 

underground interactions and the vertical segregation among root and fungi of different mycorrhizal 448 

types. 449 

 450 

Our results show that fungal communities in horizons vertically separated by a few centimeters are 451 

very different from each other in terms of composition and abundance. This contributes to high fungal 452 

and functional diversity in the topsoil. Moreover, our work suggests that the forest mycorrhizal type 453 
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influences the overall and saprotrophic fungal community, advancing our current understanding of the 454 

potential impacts of mycorrhizal strategies on the distribution of key organisms for ecosystem 455 

functioning such as C and nutrient cycling [10]. We also reported for the first time that broad patterns 456 

of vertical fungal distribution across the upper five horizons in AM-dominated northern forest are 457 

comparable to neighboring EcM-dominated or mixed forests. This result challenges the traditional 458 

view that AM fungi have a more restricted niche toward mineral soils compared to EcM fungi due to 459 

their incapability to directly decompose organic matter [31]. Our study suggests that the ecological and 460 

functional roles of AM fungi in organic horizons of temperate forests, including recently deposited 461 

litter, deserves more attention [39]. 462 
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FIGURES 783 

784 

Fig. 1 Soil physico-chemical characteristics from organic-to-mineral horizons (L, F, H, Ae, B) in each 785 

mycorrhizal forest type (AM, arbuscular mycorrhizal; EcM, ectomycorrhizal; Mixed, mixture of AM 786 

and EcM): (a) pH (in CaCl2), (b) effective cation exchange capacity, (c) base saturation, (d) organic 787 

carbon, (e) total nitrogen, (f) carbon over nitrogen ratio, (f) total phosphorus, (g) organic phosphorus 788 

and (h) labile (Bray) phosphorus. All data are means ± 1 SE (n = 5)  789 
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 790 

Fig. 2 Soil profiles from organic-to-mineral horizons (L, F, H, Ae, B) on each mycorrhizal forest type 791 

(AM, arbuscular mycorrhizal; EcM, ectomycorrhizal; Mixed, mixture of AM and EcM) showing 792 

variations in: root colonized by (a) AM fungi, (b) EcM fungi, and abundances (on shifted log data) of 793 

sequences belonging to (c) saprotrophic fungi, (d) AM fungi, (e) EcM fungi, (d) ericoid mycorrhizal 794 

(ErM) fungi. Upper organic horizon (L) had no roots so colonization was set to zero. All data are 795 

means ± 1 SE (n = 5, except n = 4 for the L horizon in EcM forest)  796 
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797 

Fig. 3 Ordination of the fungal community composition (Bray-Curtis dissimilarities) plotted in the 798 

different forest types using a non-metric multidimensional scaling with two dimensions and a stress of 799 

0.17. ** indicates difference in fungal community structure between arbuscular mycorrhizal (AM) and 800 

ectomycorrhizal (EcM) plots (P-value £ 0.01), N.S. indicates non-significant differences (see Table S2 801 

for details)  802 
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803 

Fig. 4 Constrained ordination of the overall fungal community by soil chemistry variables using a 804 

distance-based redundancy analysis with Bray-Curtis dissimilarities. Horizons are shown in different 805 

shape and colors. The two first constrained axes explaining most variation are drawn. Adjusted-R2 = 806 

23.3 %, P-value = 0.001  807 
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808 

Fig. 5 Constrained ordination of the fungal community structure depending on the forest mycorrhizal 809 

type (AM, arbuscular mycorrhizal; EcM, ectomycorrhizal; Mixed, mixture of AM and EcM) using a 810 

distance-based redundancy analysis with Bray-Curtis dissimilarities. Forest type are shown in different 811 

shape and colors. The two constrained axes are shown. Adjusted-R2 = 2.7 %, P-value = 0.006  812 
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813 

Fig. 6 Venn diagram displaying the amount of variation (i.e. adjusted-R2) of the fungal community 814 

explained by horizon, soil chemistry and forest mycorrhizal type or a combination of them. Values 815 

<0.1 % are not shown. Ellipses are not drawn to scale. Only variables with significant redundancy 816 

analysis (RDA) results were tested for partial-RDA and included in this diagram. Overall adjusted-R2 = 817 

34.8 %, * indicates P-value < 0.05 and † indicates non-testable portion. For more details see Table S3  818 
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Supplementary Material 819 

 820 

Figure S1. Map showing the 15 plots grouped in five blocks (different colors) at the University of 821 
Montréal’s field station (Québec, Montréal). The characteristics of each plots are listed in Table S1.  822 
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 823 

Figure S2. Picture of a soil core of approximately 25 cm deep, sampled with a rectangular auger, 824 
representing a typical profile in the studied sites. The five horizons can easily be distinguished with entire 825 
leaves at the top (L), then partially decomposed materials (F) and black humus (H), followed by grey Ae 826 
and brown B.  827 
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828 
Figure S3. Boxplots illustrating differences in the number of amplicon sequence variant (ASV) by 829 
horizon (L to B, from left to right). Singletons and doubletons were excluded. Bold horizontal lines 830 
represent median values; box margins 25th and 75th percentile; vertical lines represent largest and lowest 831 
value within 1.5 times interquartile range above 75th and below 25th percentile respectively; dots 832 
represent outliers that fall outside of that range.  833 
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834 
Figure S4. Soil profiles from organic-to-mineral horizons (L, F, H, Ae, B) on each mycorrhizal forest 835 
types (AM, arbuscular mycorrhizal; EcM, ectomycorrhizal; Mixed, mixture of AM and EcM) showing 836 
variations in richness of (a) EcM fungi and (b) saprotrophic fungi. All data are means ± 1 SE (n = 5, 837 
except n = 4 for the L horizon in EcM forest). Note: Due to low value, richness of AM and ErM guilds 838 
were not modeled.  839 
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 840 

Figure S5. Ordination of the fungal community composition (Sørensen distances) of the different forest 841 
type on two axes using a non-metric multidimensional scaling with two dimensions and a stress of 0.18. 842 
To visually assess the impact of Sørensen distance, the scale is kept identical to the one of Fig. 1.  843 
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Table S1. Characteristics of each plot under study. Plots in the same block were selected to have 844 
homogenous environmental conditions. 845 

Plot ID Block Altitude 

(m) 

Slope 

(%) 

Aspect 

(°) 

Total 

basal area 

(m2 ha-1) 

EcM tree 

basal area 

(% of total) 

AM tree 

basal area 

(% of total) 

Dominant 

canopy 

species 

Mycorrhizal 

dominance 

AS_01 1 403 10 95 23.2 7.5 92.5 AS AM 

FG_01 1 381 20 103 37.4 81.6 18.4 FG EcM 

Mix_01 1 383 18 160 36.1 53.4 46.6 AS and FG Mixed 

AS_02 2 398 13 140 30.9 8.4 91.6 AS AM 

FG_02 2 391 9 105 40.4 95.8 4.2 FG EcM 

Mix_02 2 381 10 110 41.9 57.4 42.6 AS and FG Mixed 

AS_03 3 374 9 140 33.3 8.4 91.6 AS AM 

FG_03 3 388 0 0 29.9 79.7 20.3 FG EcM 

Mix_03 3 396 0 0 37.0 43.9 56.1 AS and FG Mixed 

AS_04 4 376 16 220 38.9 8.3 91.7 AS AM 

FG_04 4 395 14 120 39.1 62.8 37.2 FG EcM 

Mix_04 4 375 18 180 27.8 55.5 44.5 AS and FG Mixed 

AS_05 5 366 15 140 40.2 6.4 93.6 AS AM 

FG_05 5 365 9 150 36.3 89.7 10.3 FG EcM 

Mix_05 5 366 20 190 30.8 56.1 43.9 AS and FG Mixed 

Acronyms: AS = Acer saccharum, FG = Fagus grandifolia, AM = arbuscular mycorrhiza, EcM = 846 
ectomycorrhiza.  847 
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Table S2. Multivariate analyses of differences in structure (Bray-Curtis dissimilarities) and composition 848 
(Sørensen distances) among different types of fungal communities. Analyzed using permutational 849 
multivariate analysis of variance (PERMANOVA). P-values were determined using 9999 permutations. 850 

* P £ 0.05; ** P £ 0.01, *** P £ 0.001. Df stands for degree of freedom. 851 

 

Fungal Community Dissimilarity measure P-Value Df Fungal Community P-Value 

Among forest types 

Structure 0.00014*** 2 

AM vs Mixed 0.0935 

AM vs EcM 0.0039** 

Mixed vs EcM 0.0935 

Composition 0.00074*** 2 

AM vs Mixed 0.118 

AM vs EcM 0.026* 

Mixed vs EcM 0.089 

Among horizons 

Structure 0.00001*** 4 

L vs F 0.00001*** 

F vs H 0.00001*** 

H vs Ae 0.0023** 

Ae vs B 0.00007*** 

Composition 0.00001*** 4 

L vs F 0.00001*** 

F vs H 0.0001*** 

H vs Ae 0.0118* 

Ae vs B 0.0022** 

Forest × Horizon 
Structure 0.11718 8 - - 

Composition 0.15424 8 - - 

Note: Only PERMANOVA results with P-Value ≤ 0.05 were considered for multiple comparisons. L vs 852 
H, L vs Ae, L vs B, F vs Ae, F vs B, H vs B not included but P-values < 0.0001.   853 
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Table S3. Partition of variation of the fungal community due to soil chemistry (Chemistry), experimental 854 
blocking design (Block), soil layers (Horizon) and forest mycorrhizal type (Forest) using distance-based 855 
redundancy analysis (RDA) and partial-RDA analyses. P-values were determined using 999 856 

permutations. ** P-values £ 0.01; *** P-values £ 0.001. In the formula Y is the fungal community 857 
matrix, X is the explained matrix and Z is the conditional matrix which is partialed out. Only significant 858 
RDA results were tested for partial-RDA. 859 

Model Formula (Y~X | Z) 

adjusted-

R2 (%) P-value 

Overall RDA Y~ Chemistry + Block + Horizon + Forest 34.8 0.001*** 

Single RDA 

Y ~ Chemistry 23.3 0.001*** 

Y~ Block 0.3 0.372 

Y~ Horizon 27.8 0.001*** 

Y~ Forest 2.7 0.006** 

partial-RDA 

Y~ Chemistry | Block + Horizon + Forest 1.1 0.036* 

Y~ Horizon | Chemistry + Block + Forest 6.4 0.001*** 

Y~ Forest | Chemistry + Block + Horizon 3.3 0.001*** 

 860 


