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Investigation of patterns in beta diversity has received increased attention over the last years particularly in
light of new ecological theories such as the metapopulation paradigm and metacommunity theory. Tradition-
ally, beta diversity patterns can be described by cluster analysis (i.e. dendrograms) that enables the classifi-
cation of samples. Clustering algorithms define the structure of dendrograms, consequently assessing their
performance is crucial. A common, although not always appropriate approach for assessing algorithm suit-
ability is the cophenetic correlation coefficient c. Alternatively the 2-norm has been recently proposed as
an increasingly informative method for evaluating the distortion engendered by clustering algorithms. In
the present work, the 2-norm is applied for the first time on field data and is compared with the cophenetic
correlation coefficient using a set of 105 pairwise combinations of 7 clustering methods (e.g. UPGMA) and 15
(dis)similarity/distance indices (e.g. Jaccard index). In contrast to the 2-norm, cophenetic correlation coeffi-
cient does not provide a clear indication on the efficiency of the clustering algorithms for all combinations.
The two approaches were not always in agreement in the choice of the most faithful algorithm. Additionally,
the 2-norm revealed that UPGMA is the most efficient clustering algorithm and Ward's the least. The present
results suggest that goodness-of-fit measures such as the 2-norm should be applied prior to clustering
analyses for reliable beta diversity measures.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Enhancing our knowledge of the processes that shape variability
in community structure (beta diversity) remains one of the funda-
mental challenges in contemporary community ecology (Condit et
al., 2002; Gaston et al., 2007; Tuomisto et al., 2003). To meet this chal-
lenge, applications of multivariate statistics in community ecology
have expanded significantly during the last two decades (Dray and
Legendre, 2008; Gauch, 1982; Legendre and Legendre, 1998).
Among multivariate statistical methods, ordination and clustering
are now routinely applied by ecologists to explore the spatial or tem-
poral turnover of field communities (e.g. Devictor et al., 2010; Konan
et al., 2006; Kreft and Jetz, 2010; Legendre et al., 2005; Leprieur et al.,
2009; Winder and Hunter, 2008).

Among clustering methods, those based on a hierarchy of clusters
have been used in many research fields (e.g. Bhau et al., 2009;
Kniggendorf et al., 2011; Scholz and Sadowski, 2009) and specifically
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in aquatic ecology (e.g. Jabiol et al., 2009; Leprieur et al., 2009;
Torrente-Vilara et al., 2011). Hierarchical clustering analysis is sub-
divided into agglomerative and divisive methods, the former being
most common in ecological studies (Clarke andWarwick, 2001). All ag-
glomerative procedures begin with an initial matrix (I) which is then
transformed in inter-objects/samples matrix (D) using a relevant dis-
tance measure whose selection depends on the scientific question
(see Fig. 1). In the beginning of the agglomerative process each object/
sample is considered as a separate class or cluster. For a set of N initial
objects, the first clustering will result in N-1 clusters, the next N-2 and
so on until only one cluster contains all the objects, with objects
which are most similar fusing together at each step. Based on various
clustering algorithms, different dendrograms are formed, associated
with their ultrametric distance matrix (U) and expressing different de-
grees of faithfulness with D (Legendre and Legendre, 1998).

Selecting an appropriate clustering algorithm is crucial since this can
lead to different grouping and levels of linkage between clusters in the
resulting dendrograms thus affecting the interpretation of results
(Legendre and Legendre, 1998; Parker and Arnold, 2000; van Tongeren,
1987). The cophenetic correlation coefficient c based on Pearson's corre-
lation (Legendre and Legendre, 1998; Sokal and Rohlf, 1962) is currently
themost commonly used approach (e.g. Blackburn et al., 2005; Kreft and
Jetz, 2010; May, 1999) for assessing the most faithful dendrogram (i.e.
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Fig. 1. Scheme of themethodological steps followed in clustering analysis, from the initial
matrix to the formation of dendrograms.

Table 1
Indices of similarity, dissimilarity, and distance. For indices based on presence-absence
data see Gower and Legendre (1986) and for indices based on species-abundance data
see Legendre and Legendre (1998). For clustering algorithms (acronyms in brackets)
see Legendre and Legendre (1998).

(Dis)similarity/distance index

Presence-absence data Species-abundance data

Dice or Sorensen Bray-Curtis
Gower & Legendre coefficient Canberra
Hamann coefficient Chi-2
Jaccard Euclidean distance
Ochiai Log of Bray Curtis
Phi of Pearson
Rogers & Tanimoto
Simple matching coefficient
Sokal & Sneath 1
Sokal & Sneath 2

Clustering algorithm

Ward's linkage (Ward)
Simple linkage (Simple)
Complete linkage (Complete)
Unweighted pair group method using arithmetic averages (UPGMA)
Weighted pair group method using arithmetic averages (WPGMA)
Unweighted pair group centroid method (UPGMC)
Weighted pair group centroid method (WPGMC)
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the dendrogram that preserves most faithfully D). However, it is known
that cmay not always be a reliablemeasure of distortion generated by al-
gorithms (Farris, 1969; Holgersson, 1978; Mérigot et al., 2010). For in-
stance, Mérigot et al. (2010) raised three criticisms on the reliability of
information given by c measure: (i) it is only a measure of intensity of
the monotonic linear relationship between D and U; (ii) it is sensitive
to extreme values; and (iii) a c close to 1 indicates a perfect correspon-
dence of D and U whereas the match between the two matrices can in
fact be weak. In order to find the appropriate clustering algorithm,
Mérigot et al. (2010) introduced a goodness-of-fit measure based on
the greatest singular value of the matrix of D–U, called the 2-norm
measure.

Although selecting an optimal agglomerative algorithm is a crucial
step, the majority of studies are based on subjective criteria and do
not employ a goodness-of-fit measure to check which algorithm
most faithfully preserved D (Frontalini and Coccioni, 2008; Moya-
Anegon et al., 2006; Primpas et al., 2008; Scholz and Sadowski,
2009; Verfaillie et al., 2009). For instance, Ward's linkage method
has been reported to form “exceptionally well defined clusters”
(Parker and Arnold, 2000) and is in some cases preferred to other algo-
rithms for being already applied in previous studies and/or enhancing
the discrimination between clusters (Frontalini and Coccioni, 2008;
Parker and Arnold, 2000; Verfaillie et al., 2009). Mérigot et al. (2010)
used simulated assemblages to compare the suitability of 2-norm and
c in selecting the best agglomerative algorithm and found that Ward's
algorithm produced by far the least faithful dendrogram. In addition,
the results obtained with c and 2-norm were not totally in agreement,
revealing possible misinformation due to c. Several other goodness-
of-fit measures are available for algorithm selection (e.g. Gower dis-
tance, correspondence matrices tests, and the Monte Carlo process)
(Clatworthy et al., 2007; Gower, 1983; Mantel, 1967). However, the
current approach focuses on the comparison between the novel 2-
norm measure as it has never been applied using community field
data and c for being so far the most commonly applied measure for al-
gorithm selection.

This study aims to compare the efficiency of the 2-norm and cmea-
sures in selecting the most faithful dendrogram among those produced
by seven commonly used agglomerative algorithms. This comparison
was undertaken for 15 (dis)similarity and distance indices to assess
whether the best selected agglomerative algorithm by the 2-norm
measure and/or c differed among indices. To this aim, the (dis)similarity
and distance indices were applied using data on phytoplankton assem-
blages sampled in the Gulf of Kalloni, an enclosed coastal area in the
Aegean Sea, Greece.
2. Methodology

2.1. Dataset

In the present study we used available phytoplankton species-
abundance data originally obtained to assess the effect of terrestrial
runoff on an enclosed coastal ecosystem, namely the Gulf of Kalloni,
Aegean Sea, Greece (Spatharis et al., 2007a, 2007b). These data have
been collected on a monthly basis over a period of one annual cycle
(August 2004 to July 2005) from four stations in the interior of the
Gulf (K3, K4, K5, and K7), each station containing information from
two depths (1 and 5 m). Detailed information on the dataset, sampling
methodology, and sample analysis are provided in Spatharis et al.
(2007a, 2007b). The initial matrix (I) used for the analysis contained
109 phytoplankton species by 96 samples and was analyzed using 15
(dis)similarity and distance indices (Table 1).
2.2. Data analysis

The methodology followed for the creation and evaluation of den-
drograms is summarized step by step in Fig. 1. Firstly, the initial matrix
(I) is created based on species-abundance or transformed presence-
absence data. Then, 15 common (dis)similarity and distance indices
are computed on I to create the (dis)similarity/distance matrix (D)
(e.g. Euclidean, Jaccard; see Table 1). The application of these indices be-
tween samples generated a triangular matrix D of pairwise similarities
among samples. Subsequently, 7 clustering algorithms used in the
methodological framework of Mouchet et al. (2008) were applied to
generate ultrametric matrix (U) (e.g. UPGMA, Ward; see Table 1).
Each algorithm has a specific aggregation criterion that distorts D to
some degree (Legendre and Legendre, 1998). For each (dis)similarity
and distance index,we explored the faithfulness ofU over the triangular
matrix D using the 2-norm and c approaches. It is worth noting that the
2-norm does not allow comparing the goodness-of-fit of dendrograms
obtained by different distance indices as it is directly dependent on
the scale of the employed distance index (see Mérigot et al., 2010).
The R software (version 2.12.2) was used for all calculations together
with the Clue package (Hornik, 2009) for the 2-norm computation.
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2.3. Goodness-of-fit measures

Two goodness-of-fitmeasureswere used. Firstly c, based on Pearson's
r correlation, is the linear correlation coefficient between cophenetic dis-
tances of U and the inter-objects distances of D (Sokal and Rohlf, 1962).
When c is close to 1, U is considered to respect the intrinsic information
of D without significantly distorting it (Legendre and Legendre, 1998).
The range value is between -1 and 1, which expresses increasing faithful-
ness of the clustering algorithm. The U having the highest c is therefore
assigned the highest rank (see next section). Secondly, the 2-normmea-
sure is based on the greatest singular value of the 2-normmatrix of D–U.
A perfectmatch betweenD andUwill result in a 2-norm value equal to 0.
Consequently the lowest value is attributed to themost faithful clustering
method and the rank 1 is assigned. For comparative reasons, the maxi-
mum 2-norm value observed in the present analysis was 2730.41 (see
Table 2) but the maximum is theoretically not bounded. For detailed in-
formation on the 2-norm see Mérigot et al. (2010).

2.4. Performance of clustering algorithms

In order to compare the performance of clustering algorithms a
general ranking was established based on the results of each algorithm
for each index. When an algorithm was the best performing (i.e. the
lowest 2-norm and/or the highest c values) it was assigned the rank 1
for the particular goodness-of-fit measure. If an algorithm was the sec-
ond best, then the rank 2 was assigned and so on. Therefore each algo-
rithm corresponded to a rank number for all indices. These “scores”
were cumulated to determine the overall performance of each of the 7
algorithms. The worst score would be 7 (lowest rank) times 15 (the
number of indices) i.e. 105.

3. Results

3.1. Performance of clustering algorithms: c versus 2-norm

After carrying out the 105 combinations between (dis) similarity/
distance indices and clustering algorithms, both the 2-norm and c
goodness-of-fit measures selected UPGMA as the first and WPGMA
as the second most faithful clustering algorithms, followed by com-
plete linkage (Table 2). UPGMC was found to be the second least
faithful algorithm according to both measures. Disparities in the gen-
eral ranking were also observed and these are represented graphical-
ly in Fig. 2. Ward's method was selected by c as the fourth most
faithful algorithm whereas 2-norm considered it as the least faithful
(score of 103 out of 105). Simple linkage was ranked fifth for c and
fourth for 2-norm. The same trends were revealed when looking at
the ranking results for each distance measure separately (Table 2).
Only two distance measures revealed a disagreement between the se-
lected algorithms by the 2-norm and c, namely the Euclidean distance
and the Sokal & Sneath 1 index. When comparing between different
distance measures it is worth noting that values of c were often
close and expressed low variation between different algorithms in
contrast to the 2-norm values (Table 2).

3.2. Potential incongruence between 2-norm and c: the case of Euclidean
distance

An example of potential incongruence between the two goodness-
of-fit measures (2-norm and c) is presented for the Euclidean dis-
tance measure and the UPGMA and UPGMC algorithms in the matrix
plot (or Shepard-like diagram) of Fig. 3. In order to qualitatively as-
sess the distortion between the inter-object matrix D and the ultra-
metric matrix U, matrix plots are very effective in visualizing all the
information (Legendre and Legendre, 1998). In the plot of UPGMA
points tends to follow the first bissectrix (Fig. 3a, c=0.90), however
this is not the case for UPGMC (Fig. 3b) although c is slightly higher



Fig. 2. Spider chart of the performance of the 7 clustering algorithms for the 15 inter-object
matrices generated by the 15 (dis) similarity/distance indices from the unique initialmatrix.
Algorithms performing best according to the 2-norm and cophenetic correlation coefficient
c are closer to the center of the chart being often near to the first rank. The vertical axis rep-
resents the total score of algorithms based on the 2-norm (solid lines) and c (dotted lines)
measures.
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(c=0.91). The ranking is clearly different for the 2-norm that selected
UPGMA as the most faithful algorithm (2-norm=100.08). The 2-
norm considered UPGMA to have the lowest distortion between ele-
ments of the inter-objects matrix dij and elements of the ultrametric
matrix uij, UPGMC being the second least faithful (2-norm=544.91).
In addition, Ward's method was ranked as the least faithful with a
value of 2-norm and c equal to 2730.41 and 0.41 respectively exempli-
fying its recurring weak faithfulness.

4. Discussion

Cluster analyses are widely used in many scientific disciplines and
even more so in community ecology (Leprieur et al., 2009; Petchey
and Gaston, 2009). In the case of field phytoplankton data such as
those used in the present study, important ecological questions can
be explored related to the spatial or temporal organization of assem-
blages (Spatharis et al., 2007b; Winder and Hunder, 2008). Despite
the value of cluster analyses in revealing beta diversity patterns, the
use of goodness-of-fit measures for obtaining more reliable results
Fig. 3. Matrix plot of inter-object (D) and ultrametric (U) matrices for clustering methods UPG
The solid line corresponds to the bissectrix line (x=y) i.e. when the goodness-of-fit of D to U
is still scarce. The present investigation indicates that the cophenetic
correlation coefficient c is mostly congruent with the 2-norm, reveal-
ing nonetheless important disparities. Consequently, a question rises
on whether the wide use of (linear) correlation coefficients as
goodness-of-fit measures might have mislead studies on the choice
of the most faithful algorithms and resulting hierarchical classifica-
tions (e.g. Hale and Dougherty, 1988; Kreft and Jetz, 2010; Malik
and Husain, 2006).

UPGMAwas selected by both goodness-of-fit criteria (2-norm and c)
as the most faithful algorithm, providing the best fit between D and U.
This agglomerative algorithm may be able to handle simultaneously
highly similar and dissimilar data (Kniggendorf et al., 2011). It is worth
noting that the closely-related WPGMA algorithm may be more appro-
priate in some cases, e.g. when using the Jaccard or Sorensen dissimilar-
ity indices (Table 1). On the contrary, Ward's method seems to be the
least faithful, never achieving the best fit. These results disagree with
previous studies (Cao et al., 1997; Clatworthy et al., 2007; Primpas et
al., 2008). For instance, in the study by Primpas et al. (2008)Ward's link-
age algorithm was selected as the most appropriate for eutrophication
studies based on its high resolution and discriminative power, however
not using a goodness-of-fit criterion. Based on the results of the present
study,we anticipate that the use of a goodness-of-fitmeasure such as the
2-norm could have promoted the selection of an algorithm other than
Ward's.

Selection of appropriate algorithms for a given dataset should be
carried out with great caution on a case-by-case basis. Furthermore,
algorithm selection should not entirely rely on criteria such as dis-
criminative ability or cluster configuration (e.g. Parker and Arnold,
2000; Primpas et al., 2008) but should be based on a goodness-of-fit
measure. Disparities between clustering algorithms in different studies
may have been generated because datasets were assumed to have a
predetermined structure and obvious patterns, assessing the perfor-
mance of clustering methods with an a priori knowledge of the group-
ing (Cao et al., 1997; Primpas et al., 2008). To clarify these issues there
is a need for comparative studies considering other types of data (e.g.
phylogenetic data). The intrinsic nature of data (e.g. vectors or scalars)
is also of importance (Kniggendorf et al., 2011). Finally the performance
of an algorithm could depend on the clustering level of similarity or the
dataset size. For instance, Cao et al. (1997) suggested that UPGMA per-
forms less well at higher levels of similarity.

Although our results showed an overall agreement between the 2-
norm and c goodness-of-fit measures in selecting the most faithful and
appropriate clustering algorithm, several issues should be considered.
First, our results revealed incongruence between the 2-norm and c
MA (a) and UPGMC (b) computed with the Euclidean distance matrix for the 96 samples.
is perfect (D=U).

image of Fig.�3
image of Fig.�2
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when using the Euclidean distance and the Sokal & Sneath 1 index. This
implies that cmay lead to an inadequate choice of clustering algorithms
when using these two distance measures since the selected clustering
algorithm is not always the most faithful. Second, in contrast to the 2-
norm, values of c tend to display the same rank or to be very similar be-
tween different clustering algorithms. This trend of c is in agreement
with a previous study (Kreft and Jetz, 2010) and was observed for most
of the distance measures examined in the present study. Furthermore c
is known to be very sensitive to extreme values (Mérigot et al., 2010).
Consequently, any effect of sampling effort could lead to the selection
of another clustering algorithm. The above issues may render the selec-
tion of a given algorithm difficult and subjective. In contrast, the 2-
normprovided a clear indication formost of the employed distancemea-
sures showing a higher discriminating potential. Therefore, considering
the incorrect and unclear measurements of c we recommend the use of
2-norm as a more appropriate goodness-of-fit measure.

The results of this investigation suggest that:

• cophenetic correlation coefficient did not provide a clear indication
on clustering algorithm efficiency;

• 2-norm seems to be efficient as an alternative goodness-of-fit
measure;

• both measures revealed UPGMA as the most faithful algorithm;
• 2-norm showed Ward's as the least faithful algorithm; and
• a goodness-of-fit measure should be applied for reliable clustering
analyses.
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