

Fine-scale partitioning among plant roots and soil fungi associated with changes in mycorrhizal dominance

Alexis Carteron 15/09/2021

Outline of my endeavor into "microbial" ecology

- > Introduction on my study system and the ecological research question
- > Navigating the labyrinth of eDNA metabarcoding and its challenges
 - ☐ Challenge #1
 - ☐ Challenge #2
 - ☐ Challenge #3
 - ☐ Challenge #4
 - ☐ Challenge #...
- > Results!

What about mycorrhizae?

D. Read

What about mycorrhizae?

H. Kerp

Z. Burian

What about mycorrhizae?

H. Kerp

Z. Burian

Fossil of a 400 million year old mycorrhizal root (Taylor et al. 1995 *Mycologia*)

« The symbiosis that made life on land. »

Arbuscular Mycorrhiza (AM)

Ectomycorrhiza (EcM)

Modified from Fortin et al. 2015, Les mycorhizes: L'essor de la nouvelle révolution verte

Arbuscular Mycorrhiza (AM)

Ectomycorrhiza (EcM)

Mycorrhizal distribution

From this distribution pattern it has been hypothesized that AM and EcM symbiosis have antagonist relationships (Smith & Read, 2008 Mycorrhizal symbiosis; Tedersoo et al. 2020 Science)

Main hypothesis to be tested

Antagonism between AM and EcM symbioses within the soil profile

Main hypothesis to be tested

Antagonism between AM and EcM symbioses within the soil profile

- 1. Mycorrhizal abundance can be divided into 3 individual components (Soudzilovskaia et al., 2017 *Biogeography of mycorrhizal symbiosis*):
 - ☐ The intensity of root colonization by fungal symbionts
 - ☐ The abundance of extra-radical fungal hyphae of fungal symbionts
 - ☐ The abundance of fine roots of plant symbionts

Solution?

Methods

Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi

Miranda M. Hart¹, Kristin Aleklett¹, Pierre-Luc Chagnon², Cameron Egan¹, Stefano Ghignone³, Thorunn Helgason⁴, Ylva Lekberg⁵, Maarja Öpik⁶, Brian J. Pickles¹ and Lauren Waller⁷

Challenge #1: Terminology

OTU?

MOTU?

ZOTU?

ASV?

Challenge #1: Terminology

OTU? MOTU? ZOTU? ASV?

Challenge #1: Terminology

OTU = Operational Taxonomic Units

MOTU = Molecular OTU

ZOTU = zero-radius OTU

ASV = Amplicon sequence variants

Oligotypes, ESV, etc.

- > Not a synonym of species
- > Can corresponds to different approaches

Challenge #1: Terminology

OTU = Operational Taxonomic Units **MOTU** = Molecular OTU

ZOTU = zero-radius OTU

ASV = Amplicon sequence variants Oligotypes, ESV, etc.

- Not a synonym of species
- > Can corresponds to different approaches

Challenge #2: Which sequencing plateform?

➤ Illumina MiSeq 2 x 300 bp

Challenge #3: Choice of primers/markers

For general fungal amplification:

→ ITS3_KYO2: GATGAAGAACGYAGYRAA position 2029–2046

← ITS4: TCCTCCGCTTATTGATATGC position 2390–2409

(Toju et al. 2012 Plos One)

Challenge #3: Choice of primers/markers

For general fungal amplification:

→ ITS3_KYO2: GATGAAGAACGYAGYRAA position 2029–2046

← ITS4:TCCTCCGCTTATTGATATGC position 2390–2409

For Glomeromycetes:

LSU: nested PCR with SSUmAf-LSUmAr then LSUD2f-CS1-LSUmBr-CS2

(Toju et al. 2012 Plos One)

For plants:

Large subunit of RuBisCO: rbcLa_f-rbcLa_r

Choice of primers: Primer specificity

Example for fungal ITS

Choice of primers: Expected sequence length

Example for fungal ITS

Challenge #4: Which pipeline?

http://benjjneb.github.io/dada2/tutorial.html

Callahan et al. 2016 Nature Methods

The idea behind DADA2

The idea behind DADA2

Challenge #5: To cluster or not to cluster?

In favor of NOT clustering:

> Improved taxonomic resolution

e.g. differentiate between pathogenic and non-pathogenic lineages, discriminate between strains that have distinct environmental preferences

Challenge #5: To cluster or not to cluster?

In favor of NOT clustering:

> Improved taxonomic resolution

e.g. differentiate between pathogenic and non-pathogenic lineages, discriminate between strains that have distinct environmental preferences

> ASVs as consistent labels

A single sequence for all members of a variants

Sequences within each ASV are identical to one another.

Different datasets are more readily compared against one another.

Challenge #5: To cluster or not to cluster?

In FAVOR of clustering:

> Intra-genomic heterogeneity

Half of bacteria have more than one rRNA operon (Pei et al. 2010) with some bacteria having >10 rRNA operons in a single genome.

Fungi have high intra-isolate nucleotide variation

Challenge #5: To cluster or not to cluster?

In FAVOR of clustering:

> Intra-genomic heterogeneity

Half of bacteria have more than one rRNA operon (Pei et al. 2010) with some bacteria having >10 rRNA operons in a single genome.

Fungi have high intra-isolate nucleotide variation

Solution? A single taxon split into multiple ASVs, abundance of those ASVs would be highly correlated

Challenge #5: To cluster or not to cluster?

In FAVOR of clustering:

> Intra-genomic heterogeneity

> Too much diversity

But not always true

Solution? Possible to cluster afterward

> Sensitivity to data quality

Discriminate between PCR or sequencing errors and 'real' biological variation Solution? Error modeling...

The idea behind DADA2

> Core "denoising" algorithm

Model the errors in Illumina-sequenced amplicon reads

Quantifies the rate at which an amplicon read is produced from a sample sequence as a function of sequence composition and quality

The idea behind DADA2

> Core "denoising" algorithm

Model the errors in Illumina-sequenced amplicon reads

Quantifies the rate at which an amplicon read is produced from a sample sequence as a function of sequence composition and quality

dadaFs <- dada(derepFs, err=errF, multithread=TRUE)</pre>

dadaRs <- dada(derepRs, err=errR, multithread=TRUE)</pre>

> The math behind

See Callahan et al. 2016 Nature Methods

$$p_A(j \to i) = \frac{1}{1 - \rho_{\text{pois}}(n_j \lambda_{ji}, 0)} \sum_{a=a_i}^{\infty} \rho_{\text{pois}}(n_j \lambda_{ji}, a)$$

DADA2 pipeline


```
library(dada2)
```


DADA2 pipeline


```
# Learning the error model from the data
errF <- learnErrors(filtFs)
errR <- learnErrors(filtRs)</pre>
```


It quantifies the rate at which an amplicon read is produced from a sample sequence as a function of sequence composition and quality

DADA2 pipeline

```
# Merging
mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs,</pre>
                     minOverlap = 12,
                     maxMismatch = 0,
                     returnRejects = FALSE,
                     propagateCol = character(0),
                     justConcatenate = FALSE,
                     trimOverhang = FALSE)
# Construct sequence table
seqtab <- makeSequenceTable(mergers)</pre>
# Removing chimeras
seqtab.nochim <- removeBimeraDenovo(seqtab,</pre>
                     method="pooled")
# Assigning Taxonomy
taxa.paired <- assignTaxonomy(seqtab.nochim,</pre>
                     "UNITEreferencedatabase",
                            minBoot = 80)
```


Challenge #6: Transformation the data for stabilizing variance inflation?

DESeq Love et al. 2014 Genome Biology

Many more challenges...

My two cents:

- ☐ Follow workshops
- ☐ Strong review of literature
- ☐ Take into account local expertise
- ☐ Ask questions

Methods

Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi

Miranda M. Hart¹, Kristin Aleklett¹, Pierre-Luc Chagnon², Cameron Egan¹, Stefano Ghignone³, Thorunn Helgason⁴, Ylva Lekberg⁵, Maarja Öpik⁶, Brian J. Pickles¹ and Lauren Waller⁷

Main hypothesis to be tested

Antagonism between AM and EcM symbioses within the soil profile

- 1. Mycorrhizal abundance can be divided into 3 individual components (Soudzilovskaia et al., 2017 *Biogeography of mycorrhizal symbiosis*):
 - ☐ The intensity of root colonization by fungal symbionts
 - ☐ The abundance of extra-radical fungal hyphae of fungal symbionts
 - ☐ The abundance of fine roots of plant symbionts

Solution = eDNA metabardoding!

Main hypothesis to be tested

Antagonism between AM and EcM symbioses within the soil profile

1. Mycorrhizal abundance can l	se divided into 3	3 individual	components (Soudzilovskaia et al., 2017
Biogeography of mycorrhizal symbiosis):			

- ☐ The intensity of root colonization by fungal symbionts
- ☐ The abundance of extra-radical fungal hyphae of fungal symbionts
- ☐ The abundance of fine roots of plant symbionts

Solution = eDNA metabardoding!

2. Natural sites where AM and EcM symbioses are co-occurring

Solution = sampling design!

Sampling design

- Station de biologie de l'Université de Montréal, QC, Canada
- 15 permanent plots (dominated by AM, mixed or EcM)
- ❖ Limiting variations in:
 - √ Climate
 - ✓ Parent material
 - ✓ Historical events

Carteron et al. 2020 Microb Ecol

Sampling design

Fungal community (ITS)

- ✓ 2,865,791 sequences
- ✓ 88.9% fungal origin
- ✓ Grouped in 813 taxa and7 phylums

Root and fungal distribution (from sequence data)

Approach: Comparison of distribution with shifted-log data and sequence abundance summed by sample

Root and fungal distribution (from sequence data)

- Approach: Comparison of distribution with shifted-log data and sequence abundance summed by sample
- > AM fungal very variable (data not great?)
- EcM fungi and root are abundant in EcM and mixed plots
- > But no apparent antagonism

Root and fungal network

Approach: Network analysis using sequence abundance as a proxy of mycorrhizal abundance

Root and fungal network

Approach: Network analysis using sequence abundance as a proxy of mycorrhizal abundance

- Patterns of dominance as expected
- > But no apparent antagonism between AM and EcM
- > Mycorrhizal fungi colonize L (broader niche than usually expected?)

Root and fungal co-variance

Approach: Permutation analysis to test the strength of the relationship among groups using the Monte-Carlo method on the sum of eigenvalues of the co-inertia analysis

Root and fungal co-variance

Approach: Permutation analysis to test the strength of the relationship among groups using the Monte-Carlo method on the sum of eigenvalues of the co-inertia analysis

No apparent antagonism between AM and EcM symbioses?

Main points

- No apparent antagonism between AM and EcM symbioses
- Important to take into account the vertical distribution including organic and mineral horizons
- > Hyphae in the soil are clearly not only present where roots are
- > AM fungi are abundant in organic horizons, present in L and highest "abundance" in F (but issue with LSU marker?)

NEXT -> DADA2 Tutorial

https://alexiscarter.github.io/metab/

https://alexiscarter.github.io/metab/Dada_script_ES.html

https://alexiscarter.github.io/metab/Dada_script_EN.html

ALEXIS.CARTERON@UNIMI.IT

Data source and manipulation

Group	Fungi	AM Fungi	Plant roots
Sampling	Composite soil samples from soil core, particles < 2 mm	Composite soil samples from soil core, particles < 2 mm	Fine roots" (< 2 mm diameter) from composite soil samples
DNA extraction	PowerSoil MoBio kit	PowerSoil MoBio kit	Adapted CTAB protocol
Marker for amplification	Internal transcribed spacer ITS3_KYO2-ITS4	Large Subunit (nested PCR with SSUmAf-LSUmAr then LSUD2f-CS1-LSUmBr-CS2)	Large subunit of RuBisCO rbcLa_f-rbcLa_r
Sequencing	Illumina MiSeq 2x250 bp (~1/3 run)	Illumina MiSeq 2x250 bp (~1/3 run)	Illumina MiSeq 2x250 bp (~1/3 run)
Denoising	dada2 (1.4) pipeline, link: https://doi.org/10.5281/zenodo.36 31982	dada2 (1.4) pipeline	dada2 (1.4) pipeline
Taxonomy assignment	Using RDP classifier and UNITE database (version 8.1 release 2/2/2019)	LSU training set #11 https://doi.org/10.5281/zenodo.83 5855	Customized database derived from the BOLD system http://www.boldsystems.org

Data source and manipulation

Group	Fungi	AM Fungi	Plant roots
Threshold	Singletons and doubletons excluded (keep ASV with total sum > 2)		
Transformation	Initial step for normalization: Shifted log transformation For combined analysis: Relative abundance by groups of organisms		
analysis NMDS	Sorensen (presence/absence) index Bray-Curtis index		
Groups of interest	EcM fungi, saprotrophs	Glomeromycota (phylum)	AM plant, EcM plant (using info at genus level)