DADA2 is a bioinformatics pipeline created by Callahan et al., 2016. It consists is a series of steps which filter the raw sequences obtained with Illumina sequencing. The final step is to obtain the taxonomy of the sequences that have been filtered in order to study the microbial community.
DADA2 has two major features which distinguishes it from other commonly used pipelines. On one hand, it will proceed to the modeling of the sequencing error which is supposed to make it possible to distinguish mutant sequences from erroneous sequences. On the other hand, unlike other pipelines such as QIIME or Mothur, DADA2 does not cluster 97% similar sequences in Operational Taxonomy Units (OTUs). Its Amplicon Sequence Variants (ASVs) are not grouped if the sequences are not 100% identical. See figure above.
Originally constructed for 16S marker gene sequences (Bacteria), we will use it with ITS marker gene (Fungi) sequences from Illumina MiSEQ 2x300 bp paired-end sequencing. To speed up the execution of each step, we randomly sub-sampled a dataset in order to only keep 1000 sequences per sample. Finally, Redde Caesari quae sunt Caesaris : this tutorial was largely inspired by the original DADA2 tutorial.
In general, before starting this pipeline, we must take some precautions:
This figure taken from Hugerth and Andersson, 2017 illustrates the theoretical difference between OTUs and ASV. Each color represents a clade. Yellow stars indicate mutations, red stars indicate amplification or sequencing errors. The size of the space between the sequences indicates their clustering.
(A) 100 % identity clustered OTUs.
The slightest variation of sequences causes the creation of a new group. The mutant sequences and the erroneous sequences are treated similarly.
(B) 97 % identity clustered OTUs.
A wider grouping allows to no longer consider the erroneous sequences, however the mutant sequences will also be clustered in the consensus group. (C) ASVs. Learning the error rates theoretically enables to group the erroneous sequences with the consensus sequences. In contrast, the mutant sequences are considered integrally.
First, we’re going to load the DADA2 package. You should have the latest version: packageVersion('dada2')
. Then we’re going to create a variable (path) indicating the path which will allow to access the objects required for this pipeline.
library(dada2); packageVersion("dada2")
## Loading required package: Rcpp
## [1] '1.18.0'
path <- "data/ITS_sub/"
list.files(path)
## [1] "cutadapt" "filtered_pairedend" "filtN"
## [4] "S1_R1.fastq.gz" "S1_R2.fastq.gz" "S10_R1.fastq.gz"
## [7] "S10_R2.fastq.gz" "S11_R1.fastq.gz" "S11_R2.fastq.gz"
## [10] "S12_R1.fastq.gz" "S12_R2.fastq.gz" "S13_R1.fastq.gz"
## [13] "S13_R2.fastq.gz" "S14_R1.fastq.gz" "S14_R2.fastq.gz"
## [16] "S15_R1.fastq.gz" "S15_R2.fastq.gz" "S16_R1.fastq.gz"
## [19] "S16_R2.fastq.gz" "S17_R1.fastq.gz" "S17_R2.fastq.gz"
## [22] "S18_R1.fastq.gz" "S18_R2.fastq.gz" "S2_R1.fastq.gz"
## [25] "S2_R2.fastq.gz" "S20_R1.fastq.gz" "S20_R2.fastq.gz"
## [28] "S21_R1.fastq.gz" "S21_R2.fastq.gz" "S22_R1.fastq.gz"
## [31] "S22_R2.fastq.gz" "S23_R1.fastq.gz" "S23_R2.fastq.gz"
## [34] "S24_R1.fastq.gz" "S24_R2.fastq.gz" "S25_R1.fastq.gz"
## [37] "S25_R2.fastq.gz" "S26_R1.fastq.gz" "S26_R2.fastq.gz"
## [40] "S27_R1.fastq.gz" "S27_R2.fastq.gz" "S28_R1.fastq.gz"
## [43] "S28_R2.fastq.gz" "S29_R1.fastq.gz" "S29_R2.fastq.gz"
## [46] "S3_R1.fastq.gz" "S3_R2.fastq.gz" "S30_R1.fastq.gz"
## [49] "S30_R2.fastq.gz" "S31_R1.fastq.gz" "S31_R2.fastq.gz"
## [52] "S33_R1.fastq.gz" "S33_R2.fastq.gz" "S34_R1.fastq.gz"
## [55] "S34_R2.fastq.gz" "S35_R1.fastq.gz" "S35_R2.fastq.gz"
## [58] "S36_R1.fastq.gz" "S36_R2.fastq.gz" "S37_R1.fastq.gz"
## [61] "S37_R2.fastq.gz" "S39_R1.fastq.gz" "S39_R2.fastq.gz"
## [64] "S4_R1.fastq.gz" "S4_R2.fastq.gz" "S41_R1.fastq.gz"
## [67] "S41_R2.fastq.gz" "S42_R1.fastq.gz" "S42_R2.fastq.gz"
## [70] "S43_R1.fastq.gz" "S43_R2.fastq.gz" "S44_R1.fastq.gz"
## [73] "S44_R2.fastq.gz" "S45_R1.fastq.gz" "S45_R2.fastq.gz"
## [76] "S46_R1.fastq.gz" "S46_R2.fastq.gz" "S47_R1.fastq.gz"
## [79] "S47_R2.fastq.gz" "S48_R1.fastq.gz" "S48_R2.fastq.gz"
## [82] "S49_R1.fastq.gz" "S49_R2.fastq.gz" "S5_R1.fastq.gz"
## [85] "S5_R2.fastq.gz" "S50_R1.fastq.gz" "S50_R2.fastq.gz"
## [88] "S51_R1.fastq.gz" "S51_R2.fastq.gz" "S52_R1.fastq.gz"
## [91] "S52_R2.fastq.gz" "S53_R1.fastq.gz" "S53_R2.fastq.gz"
## [94] "S54_R1.fastq.gz" "S54_R2.fastq.gz" "S55_R1.fastq.gz"
## [97] "S55_R2.fastq.gz" "S56_R1.fastq.gz" "S56_R2.fastq.gz"
## [100] "S58_R1.fastq.gz" "S58_R2.fastq.gz" "S59_R1.fastq.gz"
## [103] "S59_R2.fastq.gz" "S6_R1.fastq.gz" "S6_R2.fastq.gz"
## [106] "S60_R1.fastq.gz" "S60_R2.fastq.gz" "S61_R1.fastq.gz"
## [109] "S61_R2.fastq.gz" "S62_R1.fastq.gz" "S62_R2.fastq.gz"
## [112] "S63_R1.fastq.gz" "S63_R2.fastq.gz" "S64_R1.fastq.gz"
## [115] "S64_R2.fastq.gz" "S65_R1.fastq.gz" "S65_R2.fastq.gz"
## [118] "S66_R1.fastq.gz" "S66_R2.fastq.gz" "S67_R1.fastq.gz"
## [121] "S67_R2.fastq.gz" "S68_R1.fastq.gz" "S68_R2.fastq.gz"
## [124] "S69_R1.fastq.gz" "S69_R2.fastq.gz" "S7_R1.fastq.gz"
## [127] "S7_R2.fastq.gz" "S72_R1.fastq.gz" "S72_R2.fastq.gz"
## [130] "S73_R1.fastq.gz" "S73_R2.fastq.gz" "S74_R1.fastq.gz"
## [133] "S74_R2.fastq.gz" "S75_R1.fastq.gz" "S75_R2.fastq.gz"
## [136] "S76_R1.fastq.gz" "S76_R2.fastq.gz" "S77_R1.fastq.gz"
## [139] "S77_R2.fastq.gz" "S78_R1.fastq.gz" "S78_R2.fastq.gz"
## [142] "S79_R1.fastq.gz" "S79_R2.fastq.gz" "S8_R1.fastq.gz"
## [145] "S8_R2.fastq.gz" "S80_R1.fastq.gz" "S80_R2.fastq.gz"
## [148] "S81_R1.fastq.gz" "S81_R2.fastq.gz" "S9_R1.fastq.gz"
## [151] "S9_R2.fastq.gz"
You should see the names of the fastq files.
Now, we’re going to read in the names of the fastq files, and perform some string manipulation to get lists of the forward and reverse fastq files. The sort function ensures forward/reverse reads are in the same order.
fnFs <- sort(list.files(path, pattern="_R1.fastq"))
fnRs <- sort(list.files(path, pattern="_R2.fastq"))
Given that the forward/reverse fastq pairs belong to the same sample, we are going to extract the name and save it in a variable. In this case, we assume that the filenames have this type of format: SAMPLENAME_XXX.fastq.
sample.names <- sapply(strsplit(fnFs, "_"), `[`, 1)
sample.names
## [1] "S1" "S10" "S11" "S12" "S13" "S14" "S15" "S16" "S17" "S18" "S2" "S20"
## [13] "S21" "S22" "S23" "S24" "S25" "S26" "S27" "S28" "S29" "S3" "S30" "S31"
## [25] "S33" "S34" "S35" "S36" "S37" "S39" "S4" "S41" "S42" "S43" "S44" "S45"
## [37] "S46" "S47" "S48" "S49" "S5" "S50" "S51" "S52" "S53" "S54" "S55" "S56"
## [49] "S58" "S59" "S6" "S60" "S61" "S62" "S63" "S64" "S65" "S66" "S67" "S68"
## [61] "S69" "S7" "S72" "S73" "S74" "S75" "S76" "S77" "S78" "S79" "S8" "S80"
## [73] "S81" "S9"
Now, specify the full path to the fnFs and fnRs.
fnFs <- file.path(path, fnFs)
fnRs <- file.path(path, fnRs)
This first step allows to visualize the sequences quality thanks to the individual Q score of each nucleotide.
plotQualityProfile(fnFs[1]) # 1st Forward sample
plotQualityProfile(fnRs[1]) # 1st Reverse sample
In these figures, the median is in green and the quartiles are the dotted orange lines. Here we only plotted the first forward and reverse fastq (fnFs[1] and fnRs[1]), but it is possible to plot multiple figures(fnFs[x:y]) or aggregate them as follows.
plotQualityProfile(fnFs, aggregate = TRUE)
plotQualityProfile(fnRs, aggregate = TRUE)
The analysis of these figures helps to choose the filtring and trimming parameters of the next step. The Q score index gives us information on sequencing’s accuracy (see table).
Q score | Precision |
---|---|
10 | 90 % |
20 | 99 % |
30 | 99.9 % |
40 | 99.99 % |
Another tool for evaluating sequence quality: FastQC.
First we will create a directoy (filtered_pairedend) and objects (filtFs and filtRs) to store the filtered sequences.
filt_path <- file.path(path, "filtered_pairedend")
filtFs <- file.path(filt_path, paste0(sample.names, "_F_filt.fastq.gz"))
filtRs <- file.path(filt_path, paste0(sample.names, "_R_filt.fastq.gz"))
Let’s procede with the filterAndTrim function, its output will be stored in the out object.
out <- filterAndTrim(fnFs, filtFs, fnRs, filtRs,
truncQ=6,
truncLen = c(280,280),
trimLeft=c(18,20),
maxEE=c(2,2))
#multithread=TRUE)
First, the function needs the unfiltered sequences (fnFs and FnRs) as well as the names of the objects of the filtered sequences (filtFs and filtRs). Several parameters can then be modified as we wish:
Other settings can also be changed, they are accessible on the help page of the function : ?FilterAndTrim.
pourc <- cbind((out[,2]/out[,1])*100) # Percentage filtered sequence / non-filtered sequence
pourc_disc <- cbind(out, pourc) # combines out and pourc
pourc_disc
## reads.in reads.out
## S1_R1.fastq.gz 1000 595 59.5
## S10_R1.fastq.gz 1000 366 36.6
## S11_R1.fastq.gz 1000 432 43.2
## S12_R1.fastq.gz 1000 546 54.6
## S13_R1.fastq.gz 1000 417 41.7
## S14_R1.fastq.gz 1000 229 22.9
## S15_R1.fastq.gz 1000 512 51.2
## S16_R1.fastq.gz 1000 481 48.1
## S17_R1.fastq.gz 1000 634 63.4
## S18_R1.fastq.gz 1000 607 60.7
## S2_R1.fastq.gz 1000 482 48.2
## S20_R1.fastq.gz 1000 614 61.4
## S21_R1.fastq.gz 1000 598 59.8
## S22_R1.fastq.gz 1000 539 53.9
## S23_R1.fastq.gz 1000 561 56.1
## S24_R1.fastq.gz 1000 599 59.9
## S25_R1.fastq.gz 1000 598 59.8
## S26_R1.fastq.gz 1000 567 56.7
## S27_R1.fastq.gz 1000 650 65.0
## S28_R1.fastq.gz 1000 607 60.7
## S29_R1.fastq.gz 1000 526 52.6
## S3_R1.fastq.gz 1000 556 55.6
## S30_R1.fastq.gz 1000 551 55.1
## S31_R1.fastq.gz 1000 571 57.1
## S33_R1.fastq.gz 1000 482 48.2
## S34_R1.fastq.gz 1000 644 64.4
## S35_R1.fastq.gz 1000 558 55.8
## S36_R1.fastq.gz 1000 453 45.3
## S37_R1.fastq.gz 1000 446 44.6
## S39_R1.fastq.gz 1000 521 52.1
## S4_R1.fastq.gz 1000 425 42.5
## S41_R1.fastq.gz 1000 517 51.7
## S42_R1.fastq.gz 1000 447 44.7
## S43_R1.fastq.gz 1000 500 50.0
## S44_R1.fastq.gz 1000 369 36.9
## S45_R1.fastq.gz 1000 359 35.9
## S46_R1.fastq.gz 1000 540 54.0
## S47_R1.fastq.gz 1000 501 50.1
## S48_R1.fastq.gz 1000 391 39.1
## S49_R1.fastq.gz 1000 516 51.6
## S5_R1.fastq.gz 1000 387 38.7
## S50_R1.fastq.gz 1000 422 42.2
## S51_R1.fastq.gz 1000 567 56.7
## S52_R1.fastq.gz 1000 521 52.1
## S53_R1.fastq.gz 1000 599 59.9
## S54_R1.fastq.gz 1000 472 47.2
## S55_R1.fastq.gz 1000 571 57.1
## S56_R1.fastq.gz 1000 416 41.6
## S58_R1.fastq.gz 1000 525 52.5
## S59_R1.fastq.gz 1000 559 55.9
## S6_R1.fastq.gz 1000 619 61.9
## S60_R1.fastq.gz 1000 593 59.3
## S61_R1.fastq.gz 1000 537 53.7
## S62_R1.fastq.gz 1000 470 47.0
## S63_R1.fastq.gz 1000 644 64.4
## S64_R1.fastq.gz 1000 595 59.5
## S65_R1.fastq.gz 1000 561 56.1
## S66_R1.fastq.gz 1000 551 55.1
## S67_R1.fastq.gz 1000 544 54.4
## S68_R1.fastq.gz 1000 532 53.2
## S69_R1.fastq.gz 1000 372 37.2
## S7_R1.fastq.gz 1000 521 52.1
## S72_R1.fastq.gz 1000 558 55.8
## S73_R1.fastq.gz 1000 581 58.1
## S74_R1.fastq.gz 1000 431 43.1
## S75_R1.fastq.gz 1000 356 35.6
## S76_R1.fastq.gz 1000 403 40.3
## S77_R1.fastq.gz 1000 387 38.7
## S78_R1.fastq.gz 1000 400 40.0
## S79_R1.fastq.gz 1000 560 56.0
## S8_R1.fastq.gz 1000 423 42.3
## S80_R1.fastq.gz 1000 457 45.7
## S81_R1.fastq.gz 1000 594 59.4
## S9_R1.fastq.gz 1000 492 49.2
(mean(out[,2])/mean(out[,1]))*100 # Mean percentage
## [1] 50.98243
CHALLENGE
Draw the quality profile of the first sample once filtered and compare it to its unfiltered quality profile. Use the plotQualityProfile function.
Other filtering tools exist like: Trimmomatic.
This step consist in estimating the error rates due to sequencing. Its purpose is to differentiate between mutant sequences and false sequences. The error model is computed by alternating estimation of the error rates and inference of sample composition until they converge on a jointly consistent solution.
errF <- learnErrors(filtFs)
## 9884474 total bases in 37727 reads from 74 samples will be used for learning the error rates.
errR <- learnErrors(filtRs)
## 9809020 total bases in 37727 reads from 74 samples will be used for learning the error rates.
#multithread=TRUE
The minimum number of sequences to use for error rate learning can be specified with the nreads parameter.
plotErrors(errF, nominalQ=TRUE)
plotErrors(errR, nominalQ=TRUE)
The error rates for each possible transition (eg. A->C, A->G, …) are shown. Points are the observed error rates for each consensus quality score. The black line shows the estimated error rates after convergence. The red line shows the error rates expected under the nominal definition of the Q-value (for Illumina technology).
Combines all identical sequencing reads into into unique sequences with a corresponding abundance. It will reduce subsequent computation time by eliminating redundant comparisons. The dereplicated sequences take the name of the samples from which they come.
derepFs <- derepFastq(filtFs)
names(derepFs) <- sample.names
derepRs <- derepFastq(filtRs)
names(derepRs) <- sample.names
The advantage of DADA2 lies in the fact that it retains a summary of the quality information associated with each unique sequence. The consensus quality profile of a unique sequence is the average of the positional qualities from the dereplicated reads. These quality profiles inform the error model of the subsequent sample inference step, significantly increasing DADA2’s accuracy.
dadaFs <- dada(derepFs,
err = errF,
#multithread=TRUE,
pool=TRUE)
## 74 samples were pooled: 37727 reads in 20364 unique sequences.
dadaRs <- dada(derepRs,
err=errR,
#multithread=TRUE,
pool=TRUE)
## 74 samples were pooled: 37727 reads in 18908 unique sequences.
dadaFs[[1]]
## dada-class: object describing DADA2 denoising results
## 70 sequence variants were inferred from 364 input unique sequences.
## Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_SIZE = 16
dadaRs[[1]]
## dada-class: object describing DADA2 denoising results
## 73 sequence variants were inferred from 340 input unique sequences.
## Key parameters: OMEGA_A = 1e-40, OMEGA_C = 1e-40, BAND_SIZE = 16
#save(dadaRs, file="data/dadaRs.rdata")
#save(dadaFs, file="data/dadaFs.rdata")
The whole point of paired-end sequencing lies in the goal of merging the two strands to increase our confidence in their reliability. Merging also makes it possible to obtain longer amplicons.
The function mergePairs needs to be provided with the objects computed in the two preceding stages (derep and dada). Then, the parameters we can freely modify are:
Other settings can also be changed, they are accessible on the help page of the function : ?mergePairs. For example, if returnRejects = TRUE, pairs that were rejected because of mismatches in the overlap region are kept in the output.
mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs,
minOverlap = 12,
maxMismatch = 0)
head(mergers[[1]])
## sequence
## 1 ATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCCTTGGTATTCCGAGGGGCACACCCGTTTGAGTGTCGTGAATACTCTCAACCTTCTTGGTTTCTTTGACCACGAAGGCTTGGACTTTGGAGGTTTTTCTTGCTGGCCTCTTTAGAAGCCAGCTCCTCCTAAATGAATGGGTGGGGTCCGCTTTGCTGATCCTCGACGTGATAAGCATCTCTTCTACGTCTCAGTGTCAGCTCGGAACCCCGCTTTCCAACCGTCTTTGGACAAAGACAATGTTCGAGTTGCGACTCGACCTTACAAACCTTGACCTCAAATCGGGTGAGACTACCCGCTGAACTTAA
## 2 ATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATCCCGAGGGGCATGCCTGTTCGAGCGTCATTTCACCACTCAAGCCTGGCTTGGTGTTGGGCGACGTCCCCTTTTGGGGACGCGTCTCGAAACGCTCGGCGGCGTGGCACCGGCTTTAAGCGTAGCAGAATCTTTCGCTTTGAAAGTCGGGGCCCCGTCTGCCGGAAGACCTACTCGCAAGGTTGACCTCGGATCAGGCAGGGATACCCGCTGAACTTAA
## 3 ATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCGAGGGGCATGCCTGTTCGAGCGTCATTATAACCACTCAAGCCCCGGCTTGGTCTTGGGGTTCGCGGTCCGCGGCCCTTAAACTCAGTGGCGGTGCCGTCTGGCTCTAAGCGCAGTAATTCTCTCGCTATAGTGTCTAGGTGGTTGCTTGCCATAATCCCCCAATTTTTTACGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAA
## 4 ATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCACTCCTTGGTATTCCGAGGAGTATGCCTGTTTCAGTATCATGAGCACTCTCACACCTAACCTTTGGGTTTATGGCGTGGAATTGGAATGCGCCGACTGTCATGGTTGGCCCTTCTAAAATGTAGTTCTTGGCTGTCACCTAATACAGCAGTTTGGCCTAATAGTTTTGGCATTCATTGTCAAATCTTTGGCTAACATTTGCTCCAGGAGTCAGTCTTGATAATACAGAAAACTCATTCAAATTTTGATCTGAAATCAGGTAGGGCTACCCGCTGAACTTAA
## 5 ATGCGATACGTAATGTGAATTGCAGAATTCCGTGAATCATTGAATCTTTGAACGCATCTTGCGCCTCTTGGTATTCCGAGGGGCATGCCTGTTTGAGTGTCATTAGAACTATCAAAAAAATAGATGATTTCAATCGTTAATTTTTTTGGAATTGGAGGTGGTGCTGGTCTTTTTCCATTAATGGCCCAAGCTCCTCCGAAATGCATTAGCGAATGCAGTGCACTTTTTCTCCTTGCTTTTTCTGGGCATTGATAGTTTACTCTCATGCCCTAAGCTGGTAGGGAGGAAGTCACAGAATGCTTCCCGCTCCTGAATGTAATACAAAACTTGACGATCAAACCCCTCAAATCAGGCAGGACTACCCGCTGAACTTAA
## 6 ATGCGATAAGTAATGCGAATTGCAGAATTCAGTGAGTCATCGAATCTTTGAACGCATATTGCGCCCTTTGGTATTCCGAAGGGCATGCCTGTTCGAGCGTCATGATCAACCATCAAGCCTGGCTTGTCGTTGGACCCTGTTGTCTCTGGGCGACAGGTCCGAAAGATAATGACGGTGTCATGGCAACCCCGAATGCAACGAGCTTTTTTATAGGCACGCATTTAGTGGTTGGCAAGGCCCCCTCGTGCGTTATTATTTTCTTACGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAA
## abundance forward reverse nmatch nmismatch nindel prefer accept
## 1 172 14 11 150 0 0 2 TRUE
## 2 43 7 8 230 0 0 1 TRUE
## 3 37 21 17 234 0 0 2 TRUE
## 4 34 2 1 179 0 0 2 TRUE
## 5 32 3 2 147 0 0 1 TRUE
## 6 21 11 9 218 0 0 1 TRUE
max(mergers[[1]]$nmatch) # Largest overlap
## [1] 257
min(mergers[[1]]$nmatch) # Smallest overlap
## [1] 113
We finally have our ASVs which we are going to store in the seqtab object.
seqtab <- makeSequenceTable(mergers)
dim(seqtab)
## [1] 74 551
seqtab[,1]
## S1 S10 S11 S12 S13 S14 S15 S16 S17 S18 S2 S20 S21 S22 S23 S24 S25 S26 S27 S28
## 0 0 0 0 0 0 0 46 207 127 0 0 1 0 0 1 0 0 532 0
## S29 S3 S30 S31 S33 S34 S35 S36 S37 S39 S4 S41 S42 S43 S44 S45 S46 S47 S48 S49
## 0 0 81 7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
## S5 S50 S51 S52 S53 S54 S55 S56 S58 S59 S6 S60 S61 S62 S63 S64 S65 S66 S67 S68
## 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
## S69 S7 S72 S73 S74 S75 S76 S77 S78 S79 S8 S80 S81 S9
## 0 0 0 0 0 0 0 6 0 0 0 0 0 0
We get 551 ASVs from the 74000 raw sequences we had at the beginning. seqtab [, 1] gives the number of times the first ASV’s sequence is found in each sample.
hist(nchar(getSequences(seqtab)),xlab="Size", ylab="Frequency", main = "ASVs length", xlim=c(250,450), ylim=c(0,250))
This step aims at removing all non-biological sequences, the samples in the ASV table are all pooled together for bimera identification. Other methods can be used like the consensus method where samples are checked individually for bimeras.
seqtab.nochim <- removeBimeraDenovo(seqtab,
method = "pooled",
#multithread = TRUE,
verbose = TRUE)
## Identified 5 bimeras out of 551 input sequences.
#save(seqtab.nochim, file="data/seqtab.nochim.rdata")
round((sum(seqtab.nochim)/sum(seqtab)*100),2) # Percentage of the total sequence reads
## [1] 99.4
hist(nchar(getSequences(seqtab.nochim)),xlab="Size", ylab="Frequency", main = "Non-chimeric ASVs length", xlim=c(250,450), ylim=c(0,250)) # Lenght of the non-chimeric sequences
Now we can transform the ASVs occurrences in presence / absence which will allow to quantify the number of ASVs per sample.
seqtab.nochim.bin <- ifelse(seqtab.nochim>0,1,0)
The following table shows how many sequences were eliminated at each step. An excessive loss in the number of sequences may indicate a problem. For example, if too few sequences pass the bimera removal step, it may indicate that there are still bits of primers with ambiguous nucleotides.
getN <- function(x) sum(getUniques(x))
track <- data.frame(Input=as.numeric(out[,1]), # input
Filtered=as.numeric(out[,2]), # filtered
"Filt//In"=as.numeric(round(((out[,2]/out[,1])*100),2)),# % (Filtered / Input)
Merge = as.numeric(sapply(mergers, getN)), # Merged
"Mer//In"=as.numeric(round(((sapply(mergers, getN)/out[,1])*100),2)),# % (Merged / Input)
Nonchim = as.numeric(rowSums(seqtab.nochim)),# Non-chimeric
"Nonchim//In"=as.numeric(round(((rowSums(seqtab.nochim)/out[,1])*100),2)),# % (Non-chimeric / Input)
ASV = as.numeric(rowSums(seqtab.nochim.bin))) # Number of ASVs per sample
rownames(track) <- sample.names # Row names
head(track)
## Input Filtered Filt..In Merge Mer..In Nonchim Nonchim..In ASV
## S1 1000 595 59.5 564 56.4 564 56.4 65
## S10 1000 366 36.6 273 27.3 269 26.9 43
## S11 1000 432 43.2 342 34.2 342 34.2 58
## S12 1000 546 54.6 489 48.9 484 48.4 55
## S13 1000 417 41.7 340 34.0 338 33.8 71
## S14 1000 229 22.9 128 12.8 107 10.7 27
One picture is worth a thousand word!
library(ggplot2)
library(reshape2)
gtrack<- track[,c(1,2,4,6)]
gtrack$ID <- rownames(gtrack)
lgtrack <- melt(gtrack, id.vars="ID")
bar_track <- ggplot(lgtrack ,aes(x=ID, y=as.numeric(value), fill=variable)) +
geom_bar(stat="identity", position = "identity") +
theme_classic() + # Theme
theme(axis.ticks.length=unit(0.3,"cm")) + # Ticks size
theme(axis.text.x = element_text(angle=45) , legend.title = element_blank())+ # Changes the x labels orientation & delete legend title
scale_x_discrete(name ="Sample ID", limits=rownames(track))+ # Changes x-axis title & sorts the x label names
scale_y_continuous(name="Abundance", breaks=seq(from = 0, to = 1000, by = 100))+ #Changes y-axis title & sets the y breaks.
ggtitle("Track")# Main title
bar_track
We are finally going to the end of the pipeline with this important step of taxonomic assignment. Thanks to the implementation of the naïve Bayesian classification method, the assignTaxonomy function takes as input all the sequences to be classified as well as reference set of sequences with known taxonomy. The taxonomic assignments are given with a minimum bootstrap confidence specified with the minBoot parameter. The database of references (UNITE) is accessible on this link https://unite.ut.ee/repository.php. Other databases are also available.
taxotab <- assignTaxonomy(seqtab.nochim,
refFasta = "reference_database/sh_general_release_dynamic_01.12.2017.fasta",
minBoot = 50, #Default 50. The minimum bootstrap #confidence for # assigning a taxonomic level.
multithread=TRUE)
## UNITE fungal taxonomic reference detected.
save(taxotab, file = "data/taxotab.rdata")
#load("data/taxotab.rdata")
# view(taxotab) # Full taxonomy table
write.table(taxotab[1:5,], row.names = FALSE) # First 5 ASVs' taxonomy without the ASV sequence
## "Kingdom" "Phylum" "Class" "Order" "Family" "Genus" "Species"
## "k__Fungi" "p__Basidiomycota" "c__Agaricomycetes" "o__Agaricales" "f__Tricholomataceae" "g__Mycena" NA
## "k__Fungi" "p__Mucoromycota" "c__Umbelopsidomycetes" "o__Umbelopsidales" "f__Umbelopsidaceae" "g__Umbelopsis" "s__dimorpha"
## "k__Plantae" NA NA NA NA NA NA
## "k__Fungi" "p__Ascomycota" "c__Dothideomycetes" "o__Mytilinidales" "f__Gloniaceae" "g__Cenococcum" "s__geophilum"
## "k__Fungi" "p__Basidiomycota" "c__Agaricomycetes" "o__Agaricales" "f__Hygrophoraceae" "g__Hygrocybe" "s__flavescens"
unique(unname(taxotab[,7])) # Number of unique species
## [1] NA "s__dimorpha" "s__geophilum"
## [4] "s__flavescens" "s__algarvense" "s__terricola"
## [7] "s__punicea" "s__elongatum" "s__humilis"
## [10] "s__sylvestris" "s__opacum" "s__subvinosa"
## [13] "s__lucidum" "s__abramsii" "s__rexiana"
## [16] "s__ericae" "s__terminalis" "s__variata"
## [19] "s__conica" "s__zollingeri" "s__chlamydosporicum"
## [22] "s__asperellum" "s__album" "s__deciduus"
## [25] "s__saponaceum" "s__rufescens" "s__populi"
## [28] "s__auratus" "s__reidii" "s__podzolica"
## [31] "s__brunneoviolacea" "s__simile" "s__heterochroma"
## [34] "s__subsulphurea" "s__pseudozygospora" "s__mutabilis"
## [37] "s__microspora" "s__humicola" "s__camphoratus"
## [40] "s__acicola" "s__fuckelii" "s__var._bulbopilosa"
## [43] "s__miniata" "s__maius" "s__splendens"
## [46] "s__echinulatum" "s__chlorophana" "s__australis"
## [49] "s__lignicola" "s__lubrica" "s__phyllophila"
## [52] "s__cantharellus" "s__trabinellum" "s__pygmaeum"
## [55] "s__isabellina" "s__changbaiensis" "s__fragilis"
## [58] "s__asperulatus" "s__carneum" "s__fuscella"
## [61] "s__bicolor" "s__nigrella" "s__bulbillosa"
## [64] "s__difforme" "s__spirale" "s__finlandica"
## [67] "s__myriocarpa" "s__reginae" "s__fellea"
## [70] "s__vrijmoediae" "s__lacmus" "s__spurius"
## [73] "s__arachnoidea" "s__dioscoreae" "s__laetior"
## [76] "s__coccinea" "s__spadicea" "s__pyriforme"
## [79] "s__macrocystis" "s__risigallina" "s__pura"
## [82] "s__cinereus" "s__foliicola" "s__rebaudengoi"
## [85] "s__fusiformis" "s__metachroides" "s__diversispora"
## [88] "s__fumosa" "s__hymenocystis" "s__sublilacina"
## [91] "s__rufum" "s__atrovirens" "s__mors-panacis"
## [94] "s__acerinum" "s__skinneri" "s__glacialis"
## [97] "s__cygneicollum" "s__pullulans" "s__crocea"
## [100] "s__globulifera" "s__silvestris" "s__variabilis"
## [103] "s__griseoviride" "s__nitrata" "s__sphaeroides"
## [106] "s__renispora" "s__honrubiae" "s__eucalyptorum"
## [109] "s__sindonia" "s__grovesii" "s__piceae"
## [112] "s__stuposa" "s__moravica" "s__anomalovelatus"
## [115] "s__miyagiana" "s__pilosella" "s__flavidum"
## [118] "s__glutinosum" "s__fallax" "s__falcata"
## [121] "s__rhododendri" "s__fusispora" "s__scaurus"
## [124] "s__schulzeri" "s__lauri" "s__serotinus"
## [127] "s__alliacea" "s__cylichnium" "s__alpina"
## [130] "s__miyabei" "s__rosea" "s__albicastaneus"
## [133] "s__sepiacea" "s__fumosibrunneus" "s__spinosum"
## [136] "s__hyalocuspica" "s__boeremae" "s__epicalamia"
## [139] "s__terrestris" "s__rimosissimus" "s__bombacina"
## [142] "s__physodes" "s__verzuoliana" "s__acerina"
## [145] "s__entomopaga" "s__xylopini" "s__umbrosum"
## [148] "s__physaroides"
We obtained 546 different ASVs of which 147 have been identified at the species level
CHALLENGE
Can you find the number of different families?
Dada2 does not throw away singleton reads. However, it’s not supposed infers biological sequence variants that are only supported by a single read - singletons are assumed too difficult to differentiate from errors.
DADA2 consistently measures diversity across different filtering parameters and error rates. OTU methods do not.
The ASVs with no species assignment do not match the same species in over 50% of the bootstrap replicate kmer-based assignments (see Wang et al., 2007 for more info on the naive Bayesian classifier method).