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Aim: Mountain and high-latitude glaciers have been retreating around the world since the Little 

Ice Age. Large areas of deglaciated substrates are exposed to soil development and there is an 

urgent need to predict their evolution. Ecosystem development in these nutrient-poor and harsh 

environments is limited, with primary production heavily dependent on mutualisms such as 

arbuscular mycorrhiza and ectomycorrhiza, the two most widespread plant-fungal symbioses. 

 

Method: To explore the dynamics and drivers of mycorrhizal fungi, we conducted a 

comprehensive inventory of 1251 plots in 265 forelands of 46 glaciers around the globe, with 

sites spanning from 1 to 483 years since glacier retreat. For each plot, we assessed fungal 

community using metabarcoding of soil environmental DNA. For a subset of 32 glaciers, we also 

estimated plant community, productivity and microhabitat conditions. 

 

Results: Both types of mycorrhizal fungi colonize the substrate a few years after the retreat of 

the glaciers, although with a delay compared to the whole fungal community. Diversity of 

arbuscular mycorrhizal fungi is largely driven by time and plant community, while microclimate 

and productivity influence more strongly ectomycorrhizal fungi. 

 

Conclusions: The establishment of mycorrhizal fungi is rapid with local dynamics driven by 

time after glacier retreat but also plant community, productivity and microhabitat conditions. 

Changes in the rate of ice melt and conditions such as microclimate could disrupt biotic 

colonization, potentially by causing a mismatch between mycorrhizal partners which would slow 

soil development and associated ecological processes. Further analyses using multi-trophic 

surveys are needed to predict ecosystem-level impacts.  



METHODS 

Sample collection 

From 2014 to 2020, we collected soil samples from 1251 plots within 265 sites, located in the 

forelands of 46 mountain and high-latitude glaciers (Fig. 1) from five continents, including 

regions with different climatic conditions and rates of glacier retreat (Zemp et al., 2019). In these 

forelands, information on deglaciation dates over the past centuries is available from Marta et al. 

(2021). 

  

In each glacier foreland, we selected three to 17 suitable sites (mean = 5.8 sites per foreland, SD 

= 2.5), where glacier retreat occurred from 1 to 483 years before sampling. For each site, the age 

since glacier retreat was used as a proxy of the time available for ecosystem development, i.e. we 

used a chronosequence approach for the study of ecological successions (space-for-time 

substitution; Walker et al., 2010). At each site, we established 2-10 plots (mean = 4.7 plots, SD = 

0.8), evenly spaced at a distance of 20 meters, where possible. At each plot, we collected five 

soil subsamples at a distance of one meter. The soil was sampled to a depth of 0-20 cm, litter was 

excluded, as well as plant organs. The subsamples from the same plot were pooled, resulting in a 

composite soil sample of ~200 g per plot. After homogenization of the composite sample, 15 g of 

soil were taken and placed within 6 hours in a sterile box to be dried with 40 g of silica gel. This 

method allows reliable preservation of eDNA (Guerrieri et al., 2021). An independent soil 

sample was taken for soil chemistry analyses. 

 

Local conditions 

Habitat characteristics were determined at the plot level by estimating primary productivity, 

plant diversity, soil temperature, topographic wetness index and, for a subset of 32 glacier 

forelands (out of a total of 46), measured soil chemistry. Total nitrogen (N) concentration was 

measured for each plot by elemental analysis (Flash2000 OEA analyzer, ThermoFisher). Soil pH 

was measured using a pH-meter, from a suspension composed by 4 g of soil and 10 ml of bi-

distilled water. According to pH, two different methods were used for the measure of assimilable 

phosphorus (P) through inductively coupled plasma mass spectrometry (iCAP RQ ICP-MS, 

ThermoFisher): the Bray and Kurtz method (Bray & Kurtz, 1945) for samples with pH < 6.5 and 

the Olsen method (Olsen, 1954) for samples with pH ≥ 6.5. As an indicator of primary 

productivity, we used the normalized difference vegetation index (NDVI), which is known to be 

positively related to annual aboveground net primary production (Paruelo et al., 1997). Yearly 

maximum productivity was retrieved from the optical satellite data acquired by Sentinel-2 (ESA, 

COPERNICUS, S2) at 10 m resolution and averaged over the 2016-2019 period using Google 

Earth Engine and the rgee R package (Aybar et al., 2022). Because proglacial areas tend to have 

complex topography and prolonged snow cover, yearly maxima were preferred over standard 

masking algorithms in order to remove the noise caused by cloudiness (Lillesand et al., 2015). 

Plant diversity was estimated based on the plant MOTU data (see next section for details). Fine-

scale subsurface soil temperature (5 cm below surface) was estimated using a global 

microclimatic model approach, calibrated using data-loggers placed in 175 stations from polar, 

equatorial and alpine glacier forelands, developed in Marta et al. (2022). As a proxy of potential 

soil moisture, we used the topographic wetness index (TWI) calculated with the dynatop R 

package (Smith & Metcalfe, 2022), based on the ASTER Global Digital Elevation Map (version 

3, Abrams et al., 2020) with 1 arc-second resolution (~30 m at the equator). The TWI is based on 

the slope and the upstream contributing area; it has been found to correlate also with other 



factors than soil moisture such as plant species composition or soil pH, and its ability to predict 

soil moisture varies as a function of the focus environment and the algorithm used (Kopecký et 

al., 2021), hence analysis using the TWI should be interpreted with care. 

 

DNA sequences acquisition 

The molecular and bioinformatic workflows are detailed in Guerrieri et al. (2022). Briefly, 

sequences were obtained after: (i) mixing soil samples collected at each plot with phosphate 

buffer (Taberlet et al., 2012); (ii) extraction of eDNA using the NucleoSpin® Soil Mini Kit; (iii) 

amplification in four replicates through PCR, targeting the ITS1 region for fungi (marker 

Fung02; Epp et al., 2012) and the chloroplast trnL-P6 loop for vascular plants (marker Sper01; 

Taberlet et al., 2007) including bioinformatic blanks, extraction and amplification of negative 

controls, and positive controls (see below); (iv) library preparation and sequencing of purified 

samples using the MiSeq (fungi) and HiSeq (plants) Illumina platforms. Positive controls were 

used to verify the performance of amplifications and consisted of 16 non-tropical plant species 

belonging to 15 families (Taxaceae, Lamiaceae, Salicaceae, Polygonaceae, Betulaceae, 

Oleaceae, Pinaceae, Caprifoliaceae, Pinaceae, Aceraceae, Poaceae, Rosaceae, Brassicaceae, 

Geraniaceae, Ericaceae) and two fungal strains (Saccharomyces cerevisiae, Cryptococcus 

neoformans) at known concentrations. 

 

The bioinformatic workflow was realized using OBITools software (Boyer et al., 2016). Paired-

end reads were first assembled and only sequences with an alignment score > 40 were kept and 

assigned to the corresponding PCR replicate before dereplication. Singletons were discarded as 

well as artifacts that had lower or higher length than expected (68-919 bp for fungi and 10-220 

bp for plants). The remaining high-quality sequences were clustered as molecular operational 

taxonomic units (MOTUs) considering optimal thresholds of intra- and inter-specific variations 

at 95% for fungi and at 97% for plants (Bonin et al., 2023). For each MOTU, taxonomic 

assignment was performed using a reference database constructed from EMBL (version 140). In 

order to limit the presence of contaminants (Ficetola et al., 2015; Boyer et al., 2016; Zinger et 

al., 2019), MOTUs were not included in the analyses if they had: i) a best identity score below 

80% and total count below five (based on bioinformatic blanks) for fungi; or ii) a best identity 

score below 90% and total count below eight for plants. In addition, MOTUs were not included 

if they were detected in only one PCR replicate of the same sample or in more than one 

extraction or amplification of negative controls (potential false positives and contaminants; 

Ficetola et al., 2015; Zinger et al., 2019). Finally, the four PCR replicates were summed to 

obtain the final MOTU table following the relaxed stringency method (Mächler et al., 2021). 

  

Mycorrhizal type assignation 

Mycorrhizal types were assigned using the FUNGuild database (Nguyen et al., 2016). From the 

identified genera and families, the following ones were considered as EcM fungi: Inocybe, 

Austropaxillus, Cantharellus, Cenococcum, Clavulina, Cortinariaceae, Gomphidiaceae, 

Helvella, Lactarius, Leucophleps, Rhizopogon, Russula, Sebacinaceae, Suillus and Tuberaceae 

(Nguyen et al., 2016). For AM fungi, the following families and orders were considered: 

Acaulosporaceae, Archaeosporaceae, Archaeosporales, Diversisporaceae, Diversisporales, 

Glomeraceae, Glomerales and Paraglomeraceae (Nguyen et al., 2016). Both the database and 

the primers used are not free of biases toward specific taxa, still the functional assignment of ITS 



fungal sequences offers some of the greatest potentials in the field of fungal mycorrhizal research 

(Fei et al., 2022; Tedersoo et al., 2022; Baldrian et al., 2022). 

  

Data analyses 

Alpha-diversity at the plot level was calculated as the number of MOTUs (i.e. richness) and as 

the Shannon diversity index (i.e. the exponential of the Shannon entropy, which also corresponds 

to diversity estimated using the Hill’s number q = 1). q = 1 provides biodiversity estimates that 

are appropriate for the specificity of eDNA metabarcoding data (Calderón‐Sanou et al., 2020; 

Mächler et al., 2021). We used linear mixed models to test the hypothesis that AM fungi would 

colonize first because their host plants are more tolerant to stressful environments. First, we 

quantified the difference in diversity (estimated with q = 1) between AM and EcM fungi. 

Positive values would indicate that AM communities are more diverse than EcM communities, 

and vice versa. In the mixed model, the difference in diversity was the independent variable, time 

was the fixed factor and glacier with site nested were random factors. Models were implemented 

in the brms package (Bürkner, 2017). The model ran on four parallel chains of length 10,000 

with a burn-in of 1,000 iterations, a thinning rate of 10 and uninformative priors as provided in 

the brms package. Convergence was assessed by visually inspecting the Markov chains and 

considered sufficient when R̂ = 1. The absence of spatial autocorrelation was checked by 

visualizing spline correlograms using the ncf package (Bjornstad & Cai, 2022). 

 

To assess the potential impacts of time, glacier identity and habitat (i.e. productivity, plant 

diversity, N, P, pH, temperature, TWI) on the patterns of AM and EcM fungal alpha-diversity, 

we used a random forest algorithm to fit nonlinear multiple regressions with the randomForest 

package (Cutler & Wiener, 2022). The number of bootstrap replicates (ntree) was set to 1,000, 

with convergence verified visually by assessing out-of-bag error. Variable importance was based 

on the increase in the mean squared error and their significance was estimated after 5000 

repetitions. Plant alpha-diversity (q = 1) was calculated based on the plant MOTU data. For this 

analysis, we used data from 793 plots in 32 proglacial areas. 

The potential drivers of AM and EcM fungal beta-diversity (i.e. changes in community 

composition between plots belonging to the same foreland, N = 2031) were assessed using the 

generalized dissimilarity modelling (GDM) approach with the gdm package (Fitzpatrick et al., 

2022). This approach is well suited to identify the drivers of community dissimilarity across 

plots and to analyse relationships potentially affected by non-linearity. Beta-diversity between 

the communities inhabiting different plots was related to differences in time and habitat 

variables, as well as geographic distances. Furthermore, as a measure of plant community 

changes, we computed a principal coordinates analysis (PCoA) from the plant dissimilarity 

matrix using the Jaccard index and used the scores of the first axis for each plot as an 

explanatory variable. We focused on dissimilarities between pairs of plots located in the same 

foreland (i.e. pairs of plots located in different forelands were removed from GDM), as the aim 

was to assess the factors determining community variation within each landscape. Variable 

significance was estimated after 1000 permutations. Plots with zero MOTUs of fungi or vascular 

plants were removed from GDM. 

 

The following variables were log-transformed prior to modelling to reduce skewness: time since 

glacier retreat, vascular plant alpha-diversity N, P, TWI and NDVI. Additional R packages used 

for data wrangling and visualization included: dplyr (Wickham et al., 2017), ggplot2 (Wickham, 



2016), ggspatial (Dunnington, 2018), ggrepel (Slowikowski et al., 2021), phyloseq (McMurdie 

& Holmes, 2013), rnaturalearth (South, 2017), tidyr (Wickham & Henry, 2019) and vegan 

(Oksanen et al., 2017). 
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